$$$\frac{\ln\left(x\right)}{\ln\left(a\right)}$$$$$$x$$$ に関する積分

この計算機は、$$$x$$$ に関して $$$\frac{\ln\left(x\right)}{\ln\left(a\right)}$$$ の積分/原始関数を、手順を示しながら求めます。

関連する計算機: 定積分・広義積分計算機

$$$dx$$$$$$dy$$$ などの微分記号を使わずに書いてください。
自動検出のため、空欄のままにしてください。

計算機が計算を実行できなかった場合、エラーを見つけた場合、またはご提案・フィードバックがある場合は、お問い合わせください

入力内容

$$$\int \frac{\ln\left(x\right)}{\ln\left(a\right)}\, dx$$$ を求めよ。

解答

定数倍の法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ を、$$$c=\frac{1}{\ln{\left(a \right)}}$$$$$$f{\left(x \right)} = \ln{\left(x \right)}$$$ に対して適用する:

$${\color{red}{\int{\frac{\ln{\left(x \right)}}{\ln{\left(a \right)}} d x}}} = {\color{red}{\frac{\int{\ln{\left(x \right)} d x}}{\ln{\left(a \right)}}}}$$

積分 $$$\int{\ln{\left(x \right)} d x}$$$ には、部分積分法$$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$を用いてください。

$$$\operatorname{u}=\ln{\left(x \right)}$$$$$$\operatorname{dv}=dx$$$ とする。

したがって、$$$\operatorname{du}=\left(\ln{\left(x \right)}\right)^{\prime }dx=\frac{dx}{x}$$$(手順は»を参照)および$$$\operatorname{v}=\int{1 d x}=x$$$(手順は»を参照)。

したがって、

$$\frac{{\color{red}{\int{\ln{\left(x \right)} d x}}}}{\ln{\left(a \right)}}=\frac{{\color{red}{\left(\ln{\left(x \right)} \cdot x-\int{x \cdot \frac{1}{x} d x}\right)}}}{\ln{\left(a \right)}}=\frac{{\color{red}{\left(x \ln{\left(x \right)} - \int{1 d x}\right)}}}{\ln{\left(a \right)}}$$

$$$c=1$$$ に対して定数則 $$$\int c\, dx = c x$$$ を適用する:

$$\frac{x \ln{\left(x \right)} - {\color{red}{\int{1 d x}}}}{\ln{\left(a \right)}} = \frac{x \ln{\left(x \right)} - {\color{red}{x}}}{\ln{\left(a \right)}}$$

したがって、

$$\int{\frac{\ln{\left(x \right)}}{\ln{\left(a \right)}} d x} = \frac{x \ln{\left(x \right)} - x}{\ln{\left(a \right)}}$$

簡単化せよ:

$$\int{\frac{\ln{\left(x \right)}}{\ln{\left(a \right)}} d x} = \frac{x \left(\ln{\left(x \right)} - 1\right)}{\ln{\left(a \right)}}$$

積分定数を加える:

$$\int{\frac{\ln{\left(x \right)}}{\ln{\left(a \right)}} d x} = \frac{x \left(\ln{\left(x \right)} - 1\right)}{\ln{\left(a \right)}}+C$$

解答

$$$\int \frac{\ln\left(x\right)}{\ln\left(a\right)}\, dx = \frac{x \left(\ln\left(x\right) - 1\right)}{\ln\left(a\right)} + C$$$A


Please try a new game Rotatly