$$$\frac{\sqrt{x y}}{x^{2} y^{2}}$$$ の $$$x$$$ に関する積分
関連する計算機: 定積分・広義積分計算機
入力内容
$$$\int \frac{\sqrt{x y}}{x^{2} y^{2}}\, dx$$$ を求めよ。
解答
入力は次のように書き換えられます: $$$\int{\frac{\sqrt{x y}}{x^{2} y^{2}} d x}=\int{\frac{1}{x^{\frac{3}{2}} y^{\frac{3}{2}}} d x}$$$。
定数倍の法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ を、$$$c=\frac{1}{y^{\frac{3}{2}}}$$$ と $$$f{\left(x \right)} = \frac{1}{x^{\frac{3}{2}}}$$$ に対して適用する:
$${\color{red}{\int{\frac{1}{x^{\frac{3}{2}} y^{\frac{3}{2}}} d x}}} = {\color{red}{\frac{\int{\frac{1}{x^{\frac{3}{2}}} d x}}{y^{\frac{3}{2}}}}}$$
$$$n=- \frac{3}{2}$$$ を用いて、べき乗の法則 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ を適用します:
$$\frac{{\color{red}{\int{\frac{1}{x^{\frac{3}{2}}} d x}}}}{y^{\frac{3}{2}}}=\frac{{\color{red}{\int{x^{- \frac{3}{2}} d x}}}}{y^{\frac{3}{2}}}=\frac{{\color{red}{\frac{x^{- \frac{3}{2} + 1}}{- \frac{3}{2} + 1}}}}{y^{\frac{3}{2}}}=\frac{{\color{red}{\left(- 2 x^{- \frac{1}{2}}\right)}}}{y^{\frac{3}{2}}}=\frac{{\color{red}{\left(- \frac{2}{\sqrt{x}}\right)}}}{y^{\frac{3}{2}}}$$
したがって、
$$\int{\frac{1}{x^{\frac{3}{2}} y^{\frac{3}{2}}} d x} = - \frac{2}{\sqrt{x} y^{\frac{3}{2}}}$$
積分定数を加える:
$$\int{\frac{1}{x^{\frac{3}{2}} y^{\frac{3}{2}}} d x} = - \frac{2}{\sqrt{x} y^{\frac{3}{2}}}+C$$
解答
$$$\int \frac{\sqrt{x y}}{x^{2} y^{2}}\, dx = - \frac{2}{\sqrt{x} y^{\frac{3}{2}}} + C$$$A