$$$- \frac{3 x^{2}}{4} + \ln\left(x\right)$$$の積分

この計算機は、手順を示しながら$$$- \frac{3 x^{2}}{4} + \ln\left(x\right)$$$の不定積分(原始関数)を求めます。

関連する計算機: 定積分・広義積分計算機

$$$dx$$$$$$dy$$$ などの微分記号を使わずに書いてください。
自動検出のため、空欄のままにしてください。

計算機が計算を実行できなかった場合、エラーを見つけた場合、またはご提案・フィードバックがある場合は、お問い合わせください

入力内容

$$$\int \left(- \frac{3 x^{2}}{4} + \ln\left(x\right)\right)\, dx$$$ を求めよ。

解答

項別に積分せよ:

$${\color{red}{\int{\left(- \frac{3 x^{2}}{4} + \ln{\left(x \right)}\right)d x}}} = {\color{red}{\left(- \int{\frac{3 x^{2}}{4} d x} + \int{\ln{\left(x \right)} d x}\right)}}$$

定数倍の法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ を、$$$c=\frac{3}{4}$$$$$$f{\left(x \right)} = x^{2}$$$ に対して適用する:

$$\int{\ln{\left(x \right)} d x} - {\color{red}{\int{\frac{3 x^{2}}{4} d x}}} = \int{\ln{\left(x \right)} d x} - {\color{red}{\left(\frac{3 \int{x^{2} d x}}{4}\right)}}$$

$$$n=2$$$ を用いて、べき乗の法則 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ を適用します:

$$\int{\ln{\left(x \right)} d x} - \frac{3 {\color{red}{\int{x^{2} d x}}}}{4}=\int{\ln{\left(x \right)} d x} - \frac{3 {\color{red}{\frac{x^{1 + 2}}{1 + 2}}}}{4}=\int{\ln{\left(x \right)} d x} - \frac{3 {\color{red}{\left(\frac{x^{3}}{3}\right)}}}{4}$$

積分 $$$\int{\ln{\left(x \right)} d x}$$$ には、部分積分法$$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$を用いてください。

$$$\operatorname{u}=\ln{\left(x \right)}$$$$$$\operatorname{dv}=dx$$$ とする。

したがって、$$$\operatorname{du}=\left(\ln{\left(x \right)}\right)^{\prime }dx=\frac{dx}{x}$$$(手順は»を参照)および$$$\operatorname{v}=\int{1 d x}=x$$$(手順は»を参照)。

したがって、

$$- \frac{x^{3}}{4} + {\color{red}{\int{\ln{\left(x \right)} d x}}}=- \frac{x^{3}}{4} + {\color{red}{\left(\ln{\left(x \right)} \cdot x-\int{x \cdot \frac{1}{x} d x}\right)}}=- \frac{x^{3}}{4} + {\color{red}{\left(x \ln{\left(x \right)} - \int{1 d x}\right)}}$$

$$$c=1$$$ に対して定数則 $$$\int c\, dx = c x$$$ を適用する:

$$- \frac{x^{3}}{4} + x \ln{\left(x \right)} - {\color{red}{\int{1 d x}}} = - \frac{x^{3}}{4} + x \ln{\left(x \right)} - {\color{red}{x}}$$

したがって、

$$\int{\left(- \frac{3 x^{2}}{4} + \ln{\left(x \right)}\right)d x} = - \frac{x^{3}}{4} + x \ln{\left(x \right)} - x$$

簡単化せよ:

$$\int{\left(- \frac{3 x^{2}}{4} + \ln{\left(x \right)}\right)d x} = x \left(- \frac{x^{2}}{4} + \ln{\left(x \right)} - 1\right)$$

積分定数を加える:

$$\int{\left(- \frac{3 x^{2}}{4} + \ln{\left(x \right)}\right)d x} = x \left(- \frac{x^{2}}{4} + \ln{\left(x \right)} - 1\right)+C$$

解答

$$$\int \left(- \frac{3 x^{2}}{4} + \ln\left(x\right)\right)\, dx = x \left(- \frac{x^{2}}{4} + \ln\left(x\right) - 1\right) + C$$$A


Please try a new game Rotatly