$$$e^{\frac{x}{2}} - 2$$$の積分
入力内容
$$$\int \left(e^{\frac{x}{2}} - 2\right)\, dx$$$ を求めよ。
解答
項別に積分せよ:
$${\color{red}{\int{\left(e^{\frac{x}{2}} - 2\right)d x}}} = {\color{red}{\left(- \int{2 d x} + \int{e^{\frac{x}{2}} d x}\right)}}$$
$$$c=2$$$ に対して定数則 $$$\int c\, dx = c x$$$ を適用する:
$$\int{e^{\frac{x}{2}} d x} - {\color{red}{\int{2 d x}}} = \int{e^{\frac{x}{2}} d x} - {\color{red}{\left(2 x\right)}}$$
$$$u=\frac{x}{2}$$$ とする。
すると $$$du=\left(\frac{x}{2}\right)^{\prime }dx = \frac{dx}{2}$$$(手順は»で確認できます)、$$$dx = 2 du$$$ となります。
積分は次のようになります
$$- 2 x + {\color{red}{\int{e^{\frac{x}{2}} d x}}} = - 2 x + {\color{red}{\int{2 e^{u} d u}}}$$
定数倍の法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ を、$$$c=2$$$ と $$$f{\left(u \right)} = e^{u}$$$ に対して適用する:
$$- 2 x + {\color{red}{\int{2 e^{u} d u}}} = - 2 x + {\color{red}{\left(2 \int{e^{u} d u}\right)}}$$
指数関数の積分は $$$\int{e^{u} d u} = e^{u}$$$です:
$$- 2 x + 2 {\color{red}{\int{e^{u} d u}}} = - 2 x + 2 {\color{red}{e^{u}}}$$
次のことを思い出してください $$$u=\frac{x}{2}$$$:
$$- 2 x + 2 e^{{\color{red}{u}}} = - 2 x + 2 e^{{\color{red}{\left(\frac{x}{2}\right)}}}$$
したがって、
$$\int{\left(e^{\frac{x}{2}} - 2\right)d x} = - 2 x + 2 e^{\frac{x}{2}}$$
積分定数を加える:
$$\int{\left(e^{\frac{x}{2}} - 2\right)d x} = - 2 x + 2 e^{\frac{x}{2}}+C$$
解答
$$$\int \left(e^{\frac{x}{2}} - 2\right)\, dx = \left(- 2 x + 2 e^{\frac{x}{2}}\right) + C$$$A