$$$\cos{\left(n x \right)}$$$$$$x$$$ に関する積分

この計算機は、$$$x$$$ に関して $$$\cos{\left(n x \right)}$$$ の積分/原始関数を、手順を示しながら求めます。

関連する計算機: 定積分・広義積分計算機

$$$dx$$$$$$dy$$$ などの微分記号を使わずに書いてください。
自動検出のため、空欄のままにしてください。

計算機が計算を実行できなかった場合、エラーを見つけた場合、またはご提案・フィードバックがある場合は、お問い合わせください

入力内容

$$$\int \cos{\left(n x \right)}\, dx$$$ を求めよ。

解答

$$$u=n x$$$ とする。

すると $$$du=\left(n x\right)^{\prime }dx = n dx$$$(手順は»で確認できます)、$$$dx = \frac{du}{n}$$$ となります。

したがって、

$${\color{red}{\int{\cos{\left(n x \right)} d x}}} = {\color{red}{\int{\frac{\cos{\left(u \right)}}{n} d u}}}$$

定数倍の法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ を、$$$c=\frac{1}{n}$$$$$$f{\left(u \right)} = \cos{\left(u \right)}$$$ に対して適用する:

$${\color{red}{\int{\frac{\cos{\left(u \right)}}{n} d u}}} = {\color{red}{\frac{\int{\cos{\left(u \right)} d u}}{n}}}$$

余弦の積分は$$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:

$$\frac{{\color{red}{\int{\cos{\left(u \right)} d u}}}}{n} = \frac{{\color{red}{\sin{\left(u \right)}}}}{n}$$

次のことを思い出してください $$$u=n x$$$:

$$\frac{\sin{\left({\color{red}{u}} \right)}}{n} = \frac{\sin{\left({\color{red}{n x}} \right)}}{n}$$

したがって、

$$\int{\cos{\left(n x \right)} d x} = \frac{\sin{\left(n x \right)}}{n}$$

積分定数を加える:

$$\int{\cos{\left(n x \right)} d x} = \frac{\sin{\left(n x \right)}}{n}+C$$

解答

$$$\int \cos{\left(n x \right)}\, dx = \frac{\sin{\left(n x \right)}}{n} + C$$$A


Please try a new game Rotatly