$$$\cos{\left(\ln\left(11 x\right) \right)}$$$の積分
入力内容
$$$\int \cos{\left(\ln\left(11 x\right) \right)}\, dx$$$ を求めよ。
解答
$$$u=11 x$$$ とする。
すると $$$du=\left(11 x\right)^{\prime }dx = 11 dx$$$(手順は»で確認できます)、$$$dx = \frac{du}{11}$$$ となります。
積分は次のようになります
$${\color{red}{\int{\cos{\left(\ln{\left(11 x \right)} \right)} d x}}} = {\color{red}{\int{\frac{\cos{\left(\ln{\left(u \right)} \right)}}{11} d u}}}$$
定数倍の法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ を、$$$c=\frac{1}{11}$$$ と $$$f{\left(u \right)} = \cos{\left(\ln{\left(u \right)} \right)}$$$ に対して適用する:
$${\color{red}{\int{\frac{\cos{\left(\ln{\left(u \right)} \right)}}{11} d u}}} = {\color{red}{\left(\frac{\int{\cos{\left(\ln{\left(u \right)} \right)} d u}}{11}\right)}}$$
積分 $$$\int{\cos{\left(\ln{\left(u \right)} \right)} d u}$$$ には、部分積分法$$$\int \operatorname{g} \operatorname{dv} = \operatorname{g}\operatorname{v} - \int \operatorname{v} \operatorname{dg}$$$を用いてください。
$$$\operatorname{g}=\cos{\left(\ln{\left(u \right)} \right)}$$$ と $$$\operatorname{dv}=du$$$ とする。
したがって、$$$\operatorname{dg}=\left(\cos{\left(\ln{\left(u \right)} \right)}\right)^{\prime }du=- \frac{\sin{\left(\ln{\left(u \right)} \right)}}{u} du$$$(手順は»を参照)および$$$\operatorname{v}=\int{1 d u}=u$$$(手順は»を参照)。
この積分は次のように書き換えられる
$$\frac{{\color{red}{\int{\cos{\left(\ln{\left(u \right)} \right)} d u}}}}{11}=\frac{{\color{red}{\left(\cos{\left(\ln{\left(u \right)} \right)} \cdot u-\int{u \cdot \left(- \frac{\sin{\left(\ln{\left(u \right)} \right)}}{u}\right) d u}\right)}}}{11}=\frac{{\color{red}{\left(u \cos{\left(\ln{\left(u \right)} \right)} - \int{\left(- \sin{\left(\ln{\left(u \right)} \right)}\right)d u}\right)}}}{11}$$
定数倍の法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ を、$$$c=-1$$$ と $$$f{\left(u \right)} = \sin{\left(\ln{\left(u \right)} \right)}$$$ に対して適用する:
$$\frac{u \cos{\left(\ln{\left(u \right)} \right)}}{11} - \frac{{\color{red}{\int{\left(- \sin{\left(\ln{\left(u \right)} \right)}\right)d u}}}}{11} = \frac{u \cos{\left(\ln{\left(u \right)} \right)}}{11} - \frac{{\color{red}{\left(- \int{\sin{\left(\ln{\left(u \right)} \right)} d u}\right)}}}{11}$$
積分 $$$\int{\sin{\left(\ln{\left(u \right)} \right)} d u}$$$ には、部分積分法$$$\int \operatorname{g} \operatorname{dv} = \operatorname{g}\operatorname{v} - \int \operatorname{v} \operatorname{dg}$$$を用いてください。
$$$\operatorname{g}=\sin{\left(\ln{\left(u \right)} \right)}$$$ と $$$\operatorname{dv}=du$$$ とする。
したがって、$$$\operatorname{dg}=\left(\sin{\left(\ln{\left(u \right)} \right)}\right)^{\prime }du=\frac{\cos{\left(\ln{\left(u \right)} \right)}}{u} du$$$(手順は»を参照)および$$$\operatorname{v}=\int{1 d u}=u$$$(手順は»を参照)。
積分は次のようになります
$$\frac{u \cos{\left(\ln{\left(u \right)} \right)}}{11} + \frac{{\color{red}{\int{\sin{\left(\ln{\left(u \right)} \right)} d u}}}}{11}=\frac{u \cos{\left(\ln{\left(u \right)} \right)}}{11} + \frac{{\color{red}{\left(\sin{\left(\ln{\left(u \right)} \right)} \cdot u-\int{u \cdot \frac{\cos{\left(\ln{\left(u \right)} \right)}}{u} d u}\right)}}}{11}=\frac{u \cos{\left(\ln{\left(u \right)} \right)}}{11} + \frac{{\color{red}{\left(u \sin{\left(\ln{\left(u \right)} \right)} - \int{\cos{\left(\ln{\left(u \right)} \right)} d u}\right)}}}{11}$$
すでに見た積分に帰着しました。
したがって、積分に関する次の簡単な等式を得ました:
$$\frac{\int{\cos{\left(\ln{\left(u \right)} \right)} d u}}{11} = \frac{u \sin{\left(\ln{\left(u \right)} \right)}}{11} + \frac{u \cos{\left(\ln{\left(u \right)} \right)}}{11} - \frac{\int{\cos{\left(\ln{\left(u \right)} \right)} d u}}{11}$$
これを解くと、次のようになります。
$$\int{\cos{\left(\ln{\left(u \right)} \right)} d u} = \frac{u \left(\sin{\left(\ln{\left(u \right)} \right)} + \cos{\left(\ln{\left(u \right)} \right)}\right)}{2}$$
したがって、
$$\frac{{\color{red}{\int{\cos{\left(\ln{\left(u \right)} \right)} d u}}}}{11} = \frac{{\color{red}{\left(\frac{u \left(\sin{\left(\ln{\left(u \right)} \right)} + \cos{\left(\ln{\left(u \right)} \right)}\right)}{2}\right)}}}{11}$$
次のことを思い出してください $$$u=11 x$$$:
$$\frac{{\color{red}{u}} \left(\sin{\left(\ln{\left({\color{red}{u}} \right)} \right)} + \cos{\left(\ln{\left({\color{red}{u}} \right)} \right)}\right)}{22} = \frac{{\color{red}{\left(11 x\right)}} \left(\sin{\left(\ln{\left({\color{red}{\left(11 x\right)}} \right)} \right)} + \cos{\left(\ln{\left({\color{red}{\left(11 x\right)}} \right)} \right)}\right)}{22}$$
したがって、
$$\int{\cos{\left(\ln{\left(11 x \right)} \right)} d x} = \frac{x \left(\sin{\left(\ln{\left(11 x \right)} \right)} + \cos{\left(\ln{\left(11 x \right)} \right)}\right)}{2}$$
簡単化せよ:
$$\int{\cos{\left(\ln{\left(11 x \right)} \right)} d x} = \frac{\sqrt{2} x \sin{\left(\ln{\left(x \right)} + \frac{\pi}{4} + \ln{\left(11 \right)} \right)}}{2}$$
積分定数を加える:
$$\int{\cos{\left(\ln{\left(11 x \right)} \right)} d x} = \frac{\sqrt{2} x \sin{\left(\ln{\left(x \right)} + \frac{\pi}{4} + \ln{\left(11 \right)} \right)}}{2}+C$$
解答
$$$\int \cos{\left(\ln\left(11 x\right) \right)}\, dx = \frac{\sqrt{2} x \sin{\left(\ln\left(x\right) + \frac{\pi}{4} + \ln\left(11\right) \right)}}{2} + C$$$A