$$$36 \cos^{2}{\left(x \right)}$$$の積分

この計算機は、手順を示しながら$$$36 \cos^{2}{\left(x \right)}$$$の不定積分(原始関数)を求めます。

関連する計算機: 定積分・広義積分計算機

$$$dx$$$$$$dy$$$ などの微分記号を使わずに書いてください。
自動検出のため、空欄のままにしてください。

計算機が計算を実行できなかった場合、エラーを見つけた場合、またはご提案・フィードバックがある場合は、お問い合わせください

入力内容

$$$\int 36 \cos^{2}{\left(x \right)}\, dx$$$ を求めよ。

解答

定数倍の法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ を、$$$c=36$$$$$$f{\left(x \right)} = \cos^{2}{\left(x \right)}$$$ に対して適用する:

$${\color{red}{\int{36 \cos^{2}{\left(x \right)} d x}}} = {\color{red}{\left(36 \int{\cos^{2}{\left(x \right)} d x}\right)}}$$

冪低減公式 $$$\cos^{2}{\left(\alpha \right)} = \frac{\cos{\left(2 \alpha \right)}}{2} + \frac{1}{2}$$$$$$\alpha=x$$$ に適用する:

$$36 {\color{red}{\int{\cos^{2}{\left(x \right)} d x}}} = 36 {\color{red}{\int{\left(\frac{\cos{\left(2 x \right)}}{2} + \frac{1}{2}\right)d x}}}$$

定数倍の法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ を、$$$c=\frac{1}{2}$$$$$$f{\left(x \right)} = \cos{\left(2 x \right)} + 1$$$ に対して適用する:

$$36 {\color{red}{\int{\left(\frac{\cos{\left(2 x \right)}}{2} + \frac{1}{2}\right)d x}}} = 36 {\color{red}{\left(\frac{\int{\left(\cos{\left(2 x \right)} + 1\right)d x}}{2}\right)}}$$

項別に積分せよ:

$$18 {\color{red}{\int{\left(\cos{\left(2 x \right)} + 1\right)d x}}} = 18 {\color{red}{\left(\int{1 d x} + \int{\cos{\left(2 x \right)} d x}\right)}}$$

$$$c=1$$$ に対して定数則 $$$\int c\, dx = c x$$$ を適用する:

$$18 \int{\cos{\left(2 x \right)} d x} + 18 {\color{red}{\int{1 d x}}} = 18 \int{\cos{\left(2 x \right)} d x} + 18 {\color{red}{x}}$$

$$$u=2 x$$$ とする。

すると $$$du=\left(2 x\right)^{\prime }dx = 2 dx$$$(手順は»で確認できます)、$$$dx = \frac{du}{2}$$$ となります。

したがって、

$$18 x + 18 {\color{red}{\int{\cos{\left(2 x \right)} d x}}} = 18 x + 18 {\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}}$$

定数倍の法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ を、$$$c=\frac{1}{2}$$$$$$f{\left(u \right)} = \cos{\left(u \right)}$$$ に対して適用する:

$$18 x + 18 {\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}} = 18 x + 18 {\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{2}\right)}}$$

余弦の積分は$$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:

$$18 x + 9 {\color{red}{\int{\cos{\left(u \right)} d u}}} = 18 x + 9 {\color{red}{\sin{\left(u \right)}}}$$

次のことを思い出してください $$$u=2 x$$$:

$$18 x + 9 \sin{\left({\color{red}{u}} \right)} = 18 x + 9 \sin{\left({\color{red}{\left(2 x\right)}} \right)}$$

したがって、

$$\int{36 \cos^{2}{\left(x \right)} d x} = 18 x + 9 \sin{\left(2 x \right)}$$

積分定数を加える:

$$\int{36 \cos^{2}{\left(x \right)} d x} = 18 x + 9 \sin{\left(2 x \right)}+C$$

解答

$$$\int 36 \cos^{2}{\left(x \right)}\, dx = \left(18 x + 9 \sin{\left(2 x \right)}\right) + C$$$A


Please try a new game Rotatly