$$$5880 i n t^{8} - 1$$$ の $$$t$$$ に関する積分
入力内容
$$$\int \left(5880 i n t^{8} - 1\right)\, dt$$$ を求めよ。
解答
項別に積分せよ:
$${\color{red}{\int{\left(5880 i n t^{8} - 1\right)d t}}} = {\color{red}{\left(- \int{1 d t} + \int{5880 i n t^{8} d t}\right)}}$$
$$$c=1$$$ に対して定数則 $$$\int c\, dt = c t$$$ を適用する:
$$\int{5880 i n t^{8} d t} - {\color{red}{\int{1 d t}}} = \int{5880 i n t^{8} d t} - {\color{red}{t}}$$
定数倍の法則 $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ を、$$$c=5880 i n$$$ と $$$f{\left(t \right)} = t^{8}$$$ に対して適用する:
$$- t + {\color{red}{\int{5880 i n t^{8} d t}}} = - t + {\color{red}{\left(5880 i n \int{t^{8} d t}\right)}}$$
$$$n=8$$$ を用いて、べき乗の法則 $$$\int t^{n}\, dt = \frac{t^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ を適用します:
$$5880 i n {\color{red}{\int{t^{8} d t}}} - t=5880 i n {\color{red}{\frac{t^{1 + 8}}{1 + 8}}} - t=5880 i n {\color{red}{\left(\frac{t^{9}}{9}\right)}} - t$$
したがって、
$$\int{\left(5880 i n t^{8} - 1\right)d t} = \frac{1960 i n t^{9}}{3} - t$$
積分定数を加える:
$$\int{\left(5880 i n t^{8} - 1\right)d t} = \frac{1960 i n t^{9}}{3} - t+C$$
解答
$$$\int \left(5880 i n t^{8} - 1\right)\, dt = \left(\frac{1960 i n t^{9}}{3} - t\right) + C$$$A