$$$\frac{2 x^{4}}{x^{4} - 1}$$$の積分
入力内容
$$$\int \frac{2 x^{4}}{x^{4} - 1}\, dx$$$ を求めよ。
解答
定数倍の法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ を、$$$c=2$$$ と $$$f{\left(x \right)} = \frac{x^{4}}{x^{4} - 1}$$$ に対して適用する:
$${\color{red}{\int{\frac{2 x^{4}}{x^{4} - 1} d x}}} = {\color{red}{\left(2 \int{\frac{x^{4}}{x^{4} - 1} d x}\right)}}$$
分数を変形して分解する:
$$2 {\color{red}{\int{\frac{x^{4}}{x^{4} - 1} d x}}} = 2 {\color{red}{\int{\left(1 + \frac{1}{x^{4} - 1}\right)d x}}}$$
項別に積分せよ:
$$2 {\color{red}{\int{\left(1 + \frac{1}{x^{4} - 1}\right)d x}}} = 2 {\color{red}{\left(\int{1 d x} + \int{\frac{1}{x^{4} - 1} d x}\right)}}$$
$$$c=1$$$ に対して定数則 $$$\int c\, dx = c x$$$ を適用する:
$$2 \int{\frac{1}{x^{4} - 1} d x} + 2 {\color{red}{\int{1 d x}}} = 2 \int{\frac{1}{x^{4} - 1} d x} + 2 {\color{red}{x}}$$
部分分数分解を行う (手順は»で確認できます):
$$2 x + 2 {\color{red}{\int{\frac{1}{x^{4} - 1} d x}}} = 2 x + 2 {\color{red}{\int{\left(- \frac{1}{2 \left(x^{2} + 1\right)} - \frac{1}{4 \left(x + 1\right)} + \frac{1}{4 \left(x - 1\right)}\right)d x}}}$$
項別に積分せよ:
$$2 x + 2 {\color{red}{\int{\left(- \frac{1}{2 \left(x^{2} + 1\right)} - \frac{1}{4 \left(x + 1\right)} + \frac{1}{4 \left(x - 1\right)}\right)d x}}} = 2 x + 2 {\color{red}{\left(\int{\frac{1}{4 \left(x - 1\right)} d x} - \int{\frac{1}{4 \left(x + 1\right)} d x} - \int{\frac{1}{2 \left(x^{2} + 1\right)} d x}\right)}}$$
定数倍の法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ を、$$$c=\frac{1}{2}$$$ と $$$f{\left(x \right)} = \frac{1}{x^{2} + 1}$$$ に対して適用する:
$$2 x + 2 \int{\frac{1}{4 \left(x - 1\right)} d x} - 2 \int{\frac{1}{4 \left(x + 1\right)} d x} - 2 {\color{red}{\int{\frac{1}{2 \left(x^{2} + 1\right)} d x}}} = 2 x + 2 \int{\frac{1}{4 \left(x - 1\right)} d x} - 2 \int{\frac{1}{4 \left(x + 1\right)} d x} - 2 {\color{red}{\left(\frac{\int{\frac{1}{x^{2} + 1} d x}}{2}\right)}}$$
$$$\frac{1}{x^{2} + 1}$$$ の不定積分は $$$\int{\frac{1}{x^{2} + 1} d x} = \operatorname{atan}{\left(x \right)}$$$ です:
$$2 x + 2 \int{\frac{1}{4 \left(x - 1\right)} d x} - 2 \int{\frac{1}{4 \left(x + 1\right)} d x} - {\color{red}{\int{\frac{1}{x^{2} + 1} d x}}} = 2 x + 2 \int{\frac{1}{4 \left(x - 1\right)} d x} - 2 \int{\frac{1}{4 \left(x + 1\right)} d x} - {\color{red}{\operatorname{atan}{\left(x \right)}}}$$
定数倍の法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ を、$$$c=\frac{1}{4}$$$ と $$$f{\left(x \right)} = \frac{1}{x + 1}$$$ に対して適用する:
$$2 x - \operatorname{atan}{\left(x \right)} + 2 \int{\frac{1}{4 \left(x - 1\right)} d x} - 2 {\color{red}{\int{\frac{1}{4 \left(x + 1\right)} d x}}} = 2 x - \operatorname{atan}{\left(x \right)} + 2 \int{\frac{1}{4 \left(x - 1\right)} d x} - 2 {\color{red}{\left(\frac{\int{\frac{1}{x + 1} d x}}{4}\right)}}$$
$$$u=x + 1$$$ とする。
すると $$$du=\left(x + 1\right)^{\prime }dx = 1 dx$$$(手順は»で確認できます)、$$$dx = du$$$ となります。
この積分は次のように書き換えられる
$$2 x - \operatorname{atan}{\left(x \right)} + 2 \int{\frac{1}{4 \left(x - 1\right)} d x} - \frac{{\color{red}{\int{\frac{1}{x + 1} d x}}}}{2} = 2 x - \operatorname{atan}{\left(x \right)} + 2 \int{\frac{1}{4 \left(x - 1\right)} d x} - \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2}$$
$$$\frac{1}{u}$$$ の不定積分は $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$ です:
$$2 x - \operatorname{atan}{\left(x \right)} + 2 \int{\frac{1}{4 \left(x - 1\right)} d x} - \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2} = 2 x - \operatorname{atan}{\left(x \right)} + 2 \int{\frac{1}{4 \left(x - 1\right)} d x} - \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{2}$$
次のことを思い出してください $$$u=x + 1$$$:
$$2 x - \frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{2} - \operatorname{atan}{\left(x \right)} + 2 \int{\frac{1}{4 \left(x - 1\right)} d x} = 2 x - \frac{\ln{\left(\left|{{\color{red}{\left(x + 1\right)}}}\right| \right)}}{2} - \operatorname{atan}{\left(x \right)} + 2 \int{\frac{1}{4 \left(x - 1\right)} d x}$$
定数倍の法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ を、$$$c=\frac{1}{4}$$$ と $$$f{\left(x \right)} = \frac{1}{x - 1}$$$ に対して適用する:
$$2 x - \frac{\ln{\left(\left|{x + 1}\right| \right)}}{2} - \operatorname{atan}{\left(x \right)} + 2 {\color{red}{\int{\frac{1}{4 \left(x - 1\right)} d x}}} = 2 x - \frac{\ln{\left(\left|{x + 1}\right| \right)}}{2} - \operatorname{atan}{\left(x \right)} + 2 {\color{red}{\left(\frac{\int{\frac{1}{x - 1} d x}}{4}\right)}}$$
$$$u=x - 1$$$ とする。
すると $$$du=\left(x - 1\right)^{\prime }dx = 1 dx$$$(手順は»で確認できます)、$$$dx = du$$$ となります。
この積分は次のように書き換えられる
$$2 x - \frac{\ln{\left(\left|{x + 1}\right| \right)}}{2} - \operatorname{atan}{\left(x \right)} + \frac{{\color{red}{\int{\frac{1}{x - 1} d x}}}}{2} = 2 x - \frac{\ln{\left(\left|{x + 1}\right| \right)}}{2} - \operatorname{atan}{\left(x \right)} + \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2}$$
$$$\frac{1}{u}$$$ の不定積分は $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$ です:
$$2 x - \frac{\ln{\left(\left|{x + 1}\right| \right)}}{2} - \operatorname{atan}{\left(x \right)} + \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2} = 2 x - \frac{\ln{\left(\left|{x + 1}\right| \right)}}{2} - \operatorname{atan}{\left(x \right)} + \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{2}$$
次のことを思い出してください $$$u=x - 1$$$:
$$2 x - \frac{\ln{\left(\left|{x + 1}\right| \right)}}{2} + \frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{2} - \operatorname{atan}{\left(x \right)} = 2 x - \frac{\ln{\left(\left|{x + 1}\right| \right)}}{2} + \frac{\ln{\left(\left|{{\color{red}{\left(x - 1\right)}}}\right| \right)}}{2} - \operatorname{atan}{\left(x \right)}$$
したがって、
$$\int{\frac{2 x^{4}}{x^{4} - 1} d x} = 2 x + \frac{\ln{\left(\left|{x - 1}\right| \right)}}{2} - \frac{\ln{\left(\left|{x + 1}\right| \right)}}{2} - \operatorname{atan}{\left(x \right)}$$
積分定数を加える:
$$\int{\frac{2 x^{4}}{x^{4} - 1} d x} = 2 x + \frac{\ln{\left(\left|{x - 1}\right| \right)}}{2} - \frac{\ln{\left(\left|{x + 1}\right| \right)}}{2} - \operatorname{atan}{\left(x \right)}+C$$
解答
$$$\int \frac{2 x^{4}}{x^{4} - 1}\, dx = \left(2 x + \frac{\ln\left(\left|{x - 1}\right|\right)}{2} - \frac{\ln\left(\left|{x + 1}\right|\right)}{2} - \operatorname{atan}{\left(x \right)}\right) + C$$$A