$$$1316141568000 \sqrt{7} \pi a^{4} b c^{2} t^{\frac{5}{2}} e^{2}$$$$$$t$$$ に関する積分

この計算機は、$$$t$$$ に関して $$$1316141568000 \sqrt{7} \pi a^{4} b c^{2} t^{\frac{5}{2}} e^{2}$$$ の積分/原始関数を、手順を示しながら求めます。

関連する計算機: 定積分・広義積分計算機

$$$dx$$$$$$dy$$$ などの微分記号を使わずに書いてください。
自動検出のため、空欄のままにしてください。

計算機が計算を実行できなかった場合、エラーを見つけた場合、またはご提案・フィードバックがある場合は、お問い合わせください

入力内容

$$$\int 1316141568000 \sqrt{7} \pi a^{4} b c^{2} t^{\frac{5}{2}} e^{2}\, dt$$$ を求めよ。

解答

定数倍の法則 $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ を、$$$c=1316141568000 \sqrt{7} \pi a^{4} b c^{2} e^{2}$$$$$$f{\left(t \right)} = t^{\frac{5}{2}}$$$ に対して適用する:

$${\color{red}{\int{1316141568000 \sqrt{7} \pi a^{4} b c^{2} t^{\frac{5}{2}} e^{2} d t}}} = {\color{red}{\left(1316141568000 \sqrt{7} \pi a^{4} b c^{2} e^{2} \int{t^{\frac{5}{2}} d t}\right)}}$$

$$$n=\frac{5}{2}$$$ を用いて、べき乗の法則 $$$\int t^{n}\, dt = \frac{t^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ を適用します:

$$1316141568000 \sqrt{7} \pi a^{4} b c^{2} e^{2} {\color{red}{\int{t^{\frac{5}{2}} d t}}}=1316141568000 \sqrt{7} \pi a^{4} b c^{2} e^{2} {\color{red}{\frac{t^{1 + \frac{5}{2}}}{1 + \frac{5}{2}}}}=1316141568000 \sqrt{7} \pi a^{4} b c^{2} e^{2} {\color{red}{\left(\frac{2 t^{\frac{7}{2}}}{7}\right)}}$$

したがって、

$$\int{1316141568000 \sqrt{7} \pi a^{4} b c^{2} t^{\frac{5}{2}} e^{2} d t} = 376040448000 \sqrt{7} \pi a^{4} b c^{2} t^{\frac{7}{2}} e^{2}$$

積分定数を加える:

$$\int{1316141568000 \sqrt{7} \pi a^{4} b c^{2} t^{\frac{5}{2}} e^{2} d t} = 376040448000 \sqrt{7} \pi a^{4} b c^{2} t^{\frac{7}{2}} e^{2}+C$$

解答

$$$\int 1316141568000 \sqrt{7} \pi a^{4} b c^{2} t^{\frac{5}{2}} e^{2}\, dt = 376040448000 \sqrt{7} \pi a^{4} b c^{2} t^{\frac{7}{2}} e^{2} + C$$$A


Please try a new game Rotatly