$$$\frac{1}{u^{2}}$$$の積分
入力内容
$$$\int \frac{1}{u^{2}}\, du$$$ を求めよ。
解答
$$$n=-2$$$ を用いて、べき乗の法則 $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ を適用します:
$${\color{red}{\int{\frac{1}{u^{2}} d u}}}={\color{red}{\int{u^{-2} d u}}}={\color{red}{\frac{u^{-2 + 1}}{-2 + 1}}}={\color{red}{\left(- u^{-1}\right)}}={\color{red}{\left(- \frac{1}{u}\right)}}$$
したがって、
$$\int{\frac{1}{u^{2}} d u} = - \frac{1}{u}$$
積分定数を加える:
$$\int{\frac{1}{u^{2}} d u} = - \frac{1}{u}+C$$
解答
$$$\int \frac{1}{u^{2}}\, du = - \frac{1}{u} + C$$$A
Please try a new game Rotatly