$$$\frac{1}{- a^{2} + x^{2}}$$$ の $$$x$$$ に関する積分
入力内容
$$$\int \frac{1}{- a^{2} + x^{2}}\, dx$$$ を求めよ。
解答
部分分数分解を行う:
$${\color{red}{\int{\frac{1}{- a^{2} + x^{2}} d x}}} = {\color{red}{\int{\left(- \frac{1}{2 \left(x + \left|{a}\right|\right) \left|{a}\right|} + \frac{1}{2 \left(x - \left|{a}\right|\right) \left|{a}\right|}\right)d x}}}$$
項別に積分せよ:
$${\color{red}{\int{\left(- \frac{1}{2 \left(x + \left|{a}\right|\right) \left|{a}\right|} + \frac{1}{2 \left(x - \left|{a}\right|\right) \left|{a}\right|}\right)d x}}} = {\color{red}{\left(\int{\frac{1}{2 \left(x - \left|{a}\right|\right) \left|{a}\right|} d x} - \int{\frac{1}{2 \left(x + \left|{a}\right|\right) \left|{a}\right|} d x}\right)}}$$
定数倍の法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ を、$$$c=\frac{1}{2 \left|{a}\right|}$$$ と $$$f{\left(x \right)} = \frac{1}{- a + x}$$$ に対して適用する:
$$- \int{\frac{1}{2 \left(x + \left|{a}\right|\right) \left|{a}\right|} d x} + {\color{red}{\int{\frac{1}{2 \left(x - \left|{a}\right|\right) \left|{a}\right|} d x}}} = - \int{\frac{1}{2 \left(x + \left|{a}\right|\right) \left|{a}\right|} d x} + {\color{red}{\left(\frac{\int{\frac{1}{- a + x} d x}}{2 \left|{a}\right|}\right)}}$$
$$$u=- a + x$$$ とする。
すると $$$du=\left(- a + x\right)^{\prime }dx = 1 dx$$$(手順は»で確認できます)、$$$dx = du$$$ となります。
積分は次のようになります
$$- \int{\frac{1}{2 \left(x + \left|{a}\right|\right) \left|{a}\right|} d x} + \frac{{\color{red}{\int{\frac{1}{- a + x} d x}}}}{2 \left|{a}\right|} = - \int{\frac{1}{2 \left(x + \left|{a}\right|\right) \left|{a}\right|} d x} + \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2 \left|{a}\right|}$$
$$$\frac{1}{u}$$$ の不定積分は $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$ です:
$$- \int{\frac{1}{2 \left(x + \left|{a}\right|\right) \left|{a}\right|} d x} + \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2 \left|{a}\right|} = - \int{\frac{1}{2 \left(x + \left|{a}\right|\right) \left|{a}\right|} d x} + \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{2 \left|{a}\right|}$$
次のことを思い出してください $$$u=- a + x$$$:
$$\frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{2 \left|{a}\right|} - \int{\frac{1}{2 \left(x + \left|{a}\right|\right) \left|{a}\right|} d x} = \frac{\ln{\left(\left|{{\color{red}{\left(- a + x\right)}}}\right| \right)}}{2 \left|{a}\right|} - \int{\frac{1}{2 \left(x + \left|{a}\right|\right) \left|{a}\right|} d x}$$
定数倍の法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ を、$$$c=\frac{1}{2 \left|{a}\right|}$$$ と $$$f{\left(x \right)} = \frac{1}{a + x}$$$ に対して適用する:
$$\frac{\ln{\left(\left|{a - x}\right| \right)}}{2 \left|{a}\right|} - {\color{red}{\int{\frac{1}{2 \left(x + \left|{a}\right|\right) \left|{a}\right|} d x}}} = \frac{\ln{\left(\left|{a - x}\right| \right)}}{2 \left|{a}\right|} - {\color{red}{\left(\frac{\int{\frac{1}{a + x} d x}}{2 \left|{a}\right|}\right)}}$$
$$$u=a + x$$$ とする。
すると $$$du=\left(a + x\right)^{\prime }dx = 1 dx$$$(手順は»で確認できます)、$$$dx = du$$$ となります。
したがって、
$$\frac{\ln{\left(\left|{a - x}\right| \right)}}{2 \left|{a}\right|} - \frac{{\color{red}{\int{\frac{1}{a + x} d x}}}}{2 \left|{a}\right|} = \frac{\ln{\left(\left|{a - x}\right| \right)}}{2 \left|{a}\right|} - \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2 \left|{a}\right|}$$
$$$\frac{1}{u}$$$ の不定積分は $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$ です:
$$\frac{\ln{\left(\left|{a - x}\right| \right)}}{2 \left|{a}\right|} - \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2 \left|{a}\right|} = \frac{\ln{\left(\left|{a - x}\right| \right)}}{2 \left|{a}\right|} - \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{2 \left|{a}\right|}$$
次のことを思い出してください $$$u=a + x$$$:
$$\frac{\ln{\left(\left|{a - x}\right| \right)}}{2 \left|{a}\right|} - \frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{2 \left|{a}\right|} = \frac{\ln{\left(\left|{a - x}\right| \right)}}{2 \left|{a}\right|} - \frac{\ln{\left(\left|{{\color{red}{\left(a + x\right)}}}\right| \right)}}{2 \left|{a}\right|}$$
したがって、
$$\int{\frac{1}{- a^{2} + x^{2}} d x} = \frac{\ln{\left(\left|{a - x}\right| \right)}}{2 \left|{a}\right|} - \frac{\ln{\left(\left|{a + x}\right| \right)}}{2 \left|{a}\right|}$$
簡単化せよ:
$$\int{\frac{1}{- a^{2} + x^{2}} d x} = \frac{\ln{\left(\left|{a - x}\right| \right)} - \ln{\left(\left|{a + x}\right| \right)}}{2 \left|{a}\right|}$$
積分定数を加える:
$$\int{\frac{1}{- a^{2} + x^{2}} d x} = \frac{\ln{\left(\left|{a - x}\right| \right)} - \ln{\left(\left|{a + x}\right| \right)}}{2 \left|{a}\right|}+C$$
解答
$$$\int \frac{1}{- a^{2} + x^{2}}\, dx = \frac{\ln\left(\left|{a - x}\right|\right) - \ln\left(\left|{a + x}\right|\right)}{2 \left|{a}\right|} + C$$$A