$$$\frac{1}{x \ln^{9}\left(x\right)}$$$の積分
入力内容
$$$\int \frac{1}{x \ln^{9}\left(x\right)}\, dx$$$ を求めよ。
解答
$$$u=\ln{\left(x \right)}$$$ とする。
すると $$$du=\left(\ln{\left(x \right)}\right)^{\prime }dx = \frac{dx}{x}$$$(手順は»で確認できます)、$$$\frac{dx}{x} = du$$$ となります。
この積分は次のように書き換えられる
$${\color{red}{\int{\frac{1}{x \ln{\left(x \right)}^{9}} d x}}} = {\color{red}{\int{\frac{1}{u^{9}} d u}}}$$
$$$n=-9$$$ を用いて、べき乗の法則 $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ を適用します:
$${\color{red}{\int{\frac{1}{u^{9}} d u}}}={\color{red}{\int{u^{-9} d u}}}={\color{red}{\frac{u^{-9 + 1}}{-9 + 1}}}={\color{red}{\left(- \frac{u^{-8}}{8}\right)}}={\color{red}{\left(- \frac{1}{8 u^{8}}\right)}}$$
次のことを思い出してください $$$u=\ln{\left(x \right)}$$$:
$$- \frac{{\color{red}{u}}^{-8}}{8} = - \frac{{\color{red}{\ln{\left(x \right)}}}^{-8}}{8}$$
したがって、
$$\int{\frac{1}{x \ln{\left(x \right)}^{9}} d x} = - \frac{1}{8 \ln{\left(x \right)}^{8}}$$
積分定数を加える:
$$\int{\frac{1}{x \ln{\left(x \right)}^{9}} d x} = - \frac{1}{8 \ln{\left(x \right)}^{8}}+C$$
解答
$$$\int \frac{1}{x \ln^{9}\left(x\right)}\, dx = - \frac{1}{8 \ln^{8}\left(x\right)} + C$$$A