$$$\frac{\sqrt{1 - x}}{x}$$$の積分

この計算機は、手順を示しながら$$$\frac{\sqrt{1 - x}}{x}$$$の不定積分(原始関数)を求めます。

関連する計算機: 定積分・広義積分計算機

$$$dx$$$$$$dy$$$ などの微分記号を使わずに書いてください。
自動検出のため、空欄のままにしてください。

計算機が計算を実行できなかった場合、エラーを見つけた場合、またはご提案・フィードバックがある場合は、お問い合わせください

入力内容

$$$\int \frac{\sqrt{1 - x}}{x}\, dx$$$ を求めよ。

解答

$$$u=\sqrt{1 - x}$$$ とする。

すると $$$du=\left(\sqrt{1 - x}\right)^{\prime }dx = - \frac{1}{2 \sqrt{1 - x}} dx$$$(手順は»で確認できます)、$$$\frac{dx}{\sqrt{1 - x}} = - 2 du$$$ となります。

したがって、

$${\color{red}{\int{\frac{\sqrt{1 - x}}{x} d x}}} = {\color{red}{\int{\left(- \frac{2 u^{2}}{1 - u^{2}}\right)d u}}}$$

定数倍の法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ を、$$$c=-2$$$$$$f{\left(u \right)} = \frac{u^{2}}{1 - u^{2}}$$$ に対して適用する:

$${\color{red}{\int{\left(- \frac{2 u^{2}}{1 - u^{2}}\right)d u}}} = {\color{red}{\left(- 2 \int{\frac{u^{2}}{1 - u^{2}} d u}\right)}}$$

分子の次数が分母の次数以上であるため、多項式の長除法を行います(手順は»で確認できます):

$$- 2 {\color{red}{\int{\frac{u^{2}}{1 - u^{2}} d u}}} = - 2 {\color{red}{\int{\left(-1 + \frac{1}{1 - u^{2}}\right)d u}}}$$

項別に積分せよ:

$$- 2 {\color{red}{\int{\left(-1 + \frac{1}{1 - u^{2}}\right)d u}}} = - 2 {\color{red}{\left(- \int{1 d u} + \int{\frac{1}{1 - u^{2}} d u}\right)}}$$

$$$c=1$$$ に対して定数則 $$$\int c\, du = c u$$$ を適用する:

$$- 2 \int{\frac{1}{1 - u^{2}} d u} + 2 {\color{red}{\int{1 d u}}} = - 2 \int{\frac{1}{1 - u^{2}} d u} + 2 {\color{red}{u}}$$

部分分数分解を行う (手順は»で確認できます):

$$2 u - 2 {\color{red}{\int{\frac{1}{1 - u^{2}} d u}}} = 2 u - 2 {\color{red}{\int{\left(\frac{1}{2 \left(u + 1\right)} - \frac{1}{2 \left(u - 1\right)}\right)d u}}}$$

項別に積分せよ:

$$2 u - 2 {\color{red}{\int{\left(\frac{1}{2 \left(u + 1\right)} - \frac{1}{2 \left(u - 1\right)}\right)d u}}} = 2 u - 2 {\color{red}{\left(- \int{\frac{1}{2 \left(u - 1\right)} d u} + \int{\frac{1}{2 \left(u + 1\right)} d u}\right)}}$$

定数倍の法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ を、$$$c=\frac{1}{2}$$$$$$f{\left(u \right)} = \frac{1}{u + 1}$$$ に対して適用する:

$$2 u + 2 \int{\frac{1}{2 \left(u - 1\right)} d u} - 2 {\color{red}{\int{\frac{1}{2 \left(u + 1\right)} d u}}} = 2 u + 2 \int{\frac{1}{2 \left(u - 1\right)} d u} - 2 {\color{red}{\left(\frac{\int{\frac{1}{u + 1} d u}}{2}\right)}}$$

$$$v=u + 1$$$ とする。

すると $$$dv=\left(u + 1\right)^{\prime }du = 1 du$$$(手順は»で確認できます)、$$$du = dv$$$ となります。

積分は次のようになります

$$2 u + 2 \int{\frac{1}{2 \left(u - 1\right)} d u} - {\color{red}{\int{\frac{1}{u + 1} d u}}} = 2 u + 2 \int{\frac{1}{2 \left(u - 1\right)} d u} - {\color{red}{\int{\frac{1}{v} d v}}}$$

$$$\frac{1}{v}$$$ の不定積分は $$$\int{\frac{1}{v} d v} = \ln{\left(\left|{v}\right| \right)}$$$ です:

$$2 u + 2 \int{\frac{1}{2 \left(u - 1\right)} d u} - {\color{red}{\int{\frac{1}{v} d v}}} = 2 u + 2 \int{\frac{1}{2 \left(u - 1\right)} d u} - {\color{red}{\ln{\left(\left|{v}\right| \right)}}}$$

次のことを思い出してください $$$v=u + 1$$$:

$$2 u - \ln{\left(\left|{{\color{red}{v}}}\right| \right)} + 2 \int{\frac{1}{2 \left(u - 1\right)} d u} = 2 u - \ln{\left(\left|{{\color{red}{\left(u + 1\right)}}}\right| \right)} + 2 \int{\frac{1}{2 \left(u - 1\right)} d u}$$

定数倍の法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ を、$$$c=\frac{1}{2}$$$$$$f{\left(u \right)} = \frac{1}{u - 1}$$$ に対して適用する:

$$2 u - \ln{\left(\left|{u + 1}\right| \right)} + 2 {\color{red}{\int{\frac{1}{2 \left(u - 1\right)} d u}}} = 2 u - \ln{\left(\left|{u + 1}\right| \right)} + 2 {\color{red}{\left(\frac{\int{\frac{1}{u - 1} d u}}{2}\right)}}$$

$$$v=u - 1$$$ とする。

すると $$$dv=\left(u - 1\right)^{\prime }du = 1 du$$$(手順は»で確認できます)、$$$du = dv$$$ となります。

したがって、

$$2 u - \ln{\left(\left|{u + 1}\right| \right)} + {\color{red}{\int{\frac{1}{u - 1} d u}}} = 2 u - \ln{\left(\left|{u + 1}\right| \right)} + {\color{red}{\int{\frac{1}{v} d v}}}$$

$$$\frac{1}{v}$$$ の不定積分は $$$\int{\frac{1}{v} d v} = \ln{\left(\left|{v}\right| \right)}$$$ です:

$$2 u - \ln{\left(\left|{u + 1}\right| \right)} + {\color{red}{\int{\frac{1}{v} d v}}} = 2 u - \ln{\left(\left|{u + 1}\right| \right)} + {\color{red}{\ln{\left(\left|{v}\right| \right)}}}$$

次のことを思い出してください $$$v=u - 1$$$:

$$2 u - \ln{\left(\left|{u + 1}\right| \right)} + \ln{\left(\left|{{\color{red}{v}}}\right| \right)} = 2 u - \ln{\left(\left|{u + 1}\right| \right)} + \ln{\left(\left|{{\color{red}{\left(u - 1\right)}}}\right| \right)}$$

次のことを思い出してください $$$u=\sqrt{1 - x}$$$:

$$\ln{\left(\left|{-1 + {\color{red}{u}}}\right| \right)} - \ln{\left(\left|{1 + {\color{red}{u}}}\right| \right)} + 2 {\color{red}{u}} = \ln{\left(\left|{-1 + {\color{red}{\sqrt{1 - x}}}}\right| \right)} - \ln{\left(\left|{1 + {\color{red}{\sqrt{1 - x}}}}\right| \right)} + 2 {\color{red}{\sqrt{1 - x}}}$$

したがって、

$$\int{\frac{\sqrt{1 - x}}{x} d x} = 2 \sqrt{1 - x} + \ln{\left(\left|{\sqrt{1 - x} - 1}\right| \right)} - \ln{\left(\left|{\sqrt{1 - x} + 1}\right| \right)}$$

積分定数を加える:

$$\int{\frac{\sqrt{1 - x}}{x} d x} = 2 \sqrt{1 - x} + \ln{\left(\left|{\sqrt{1 - x} - 1}\right| \right)} - \ln{\left(\left|{\sqrt{1 - x} + 1}\right| \right)}+C$$

解答

$$$\int \frac{\sqrt{1 - x}}{x}\, dx = \left(2 \sqrt{1 - x} + \ln\left(\left|{\sqrt{1 - x} - 1}\right|\right) - \ln\left(\left|{\sqrt{1 - x} + 1}\right|\right)\right) + C$$$A


Please try a new game Rotatly