$$$\frac{z \operatorname{asin}{\left(\ln\left(x\right) \right)}}{x}$$$$$$x$$$ に関する積分

この計算機は、$$$x$$$ に関して $$$\frac{z \operatorname{asin}{\left(\ln\left(x\right) \right)}}{x}$$$ の積分/原始関数を、手順を示しながら求めます。

関連する計算機: 定積分・広義積分計算機

$$$dx$$$$$$dy$$$ などの微分記号を使わずに書いてください。
自動検出のため、空欄のままにしてください。

計算機が計算を実行できなかった場合、エラーを見つけた場合、またはご提案・フィードバックがある場合は、お問い合わせください

入力内容

$$$\int \frac{z \operatorname{asin}{\left(\ln\left(x\right) \right)}}{x}\, dx$$$ を求めよ。

解答

定数倍の法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ を、$$$c=z$$$$$$f{\left(x \right)} = \frac{\operatorname{asin}{\left(\ln{\left(x \right)} \right)}}{x}$$$ に対して適用する:

$${\color{red}{\int{\frac{z \operatorname{asin}{\left(\ln{\left(x \right)} \right)}}{x} d x}}} = {\color{red}{z \int{\frac{\operatorname{asin}{\left(\ln{\left(x \right)} \right)}}{x} d x}}}$$

$$$u=\ln{\left(x \right)}$$$ とする。

すると $$$du=\left(\ln{\left(x \right)}\right)^{\prime }dx = \frac{dx}{x}$$$(手順は»で確認できます)、$$$\frac{dx}{x} = du$$$ となります。

この積分は次のように書き換えられる

$$z {\color{red}{\int{\frac{\operatorname{asin}{\left(\ln{\left(x \right)} \right)}}{x} d x}}} = z {\color{red}{\int{\operatorname{asin}{\left(u \right)} d u}}}$$

積分 $$$\int{\operatorname{asin}{\left(u \right)} d u}$$$ には、部分積分法$$$\int \operatorname{a} \operatorname{dv} = \operatorname{a}\operatorname{v} - \int \operatorname{v} \operatorname{da}$$$を用いてください。

$$$\operatorname{a}=\operatorname{asin}{\left(u \right)}$$$$$$\operatorname{dv}=du$$$ とする。

したがって、$$$\operatorname{da}=\left(\operatorname{asin}{\left(u \right)}\right)^{\prime }du=\frac{du}{\sqrt{1 - u^{2}}}$$$(手順は»を参照)および$$$\operatorname{v}=\int{1 d u}=u$$$(手順は»を参照)。

積分は次のようになります

$$z {\color{red}{\int{\operatorname{asin}{\left(u \right)} d u}}}=z {\color{red}{\left(\operatorname{asin}{\left(u \right)} \cdot u-\int{u \cdot \frac{1}{\sqrt{1 - u^{2}}} d u}\right)}}=z {\color{red}{\left(u \operatorname{asin}{\left(u \right)} - \int{\frac{u}{\sqrt{1 - u^{2}}} d u}\right)}}$$

$$$v=1 - u^{2}$$$ とする。

すると $$$dv=\left(1 - u^{2}\right)^{\prime }du = - 2 u du$$$(手順は»で確認できます)、$$$u du = - \frac{dv}{2}$$$ となります。

したがって、

$$z \left(u \operatorname{asin}{\left(u \right)} - {\color{red}{\int{\frac{u}{\sqrt{1 - u^{2}}} d u}}}\right) = z \left(u \operatorname{asin}{\left(u \right)} - {\color{red}{\int{\left(- \frac{1}{2 \sqrt{v}}\right)d v}}}\right)$$

定数倍の法則 $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$ を、$$$c=- \frac{1}{2}$$$$$$f{\left(v \right)} = \frac{1}{\sqrt{v}}$$$ に対して適用する:

$$z \left(u \operatorname{asin}{\left(u \right)} - {\color{red}{\int{\left(- \frac{1}{2 \sqrt{v}}\right)d v}}}\right) = z \left(u \operatorname{asin}{\left(u \right)} - {\color{red}{\left(- \frac{\int{\frac{1}{\sqrt{v}} d v}}{2}\right)}}\right)$$

$$$n=- \frac{1}{2}$$$ を用いて、べき乗の法則 $$$\int v^{n}\, dv = \frac{v^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ を適用します:

$$z \left(u \operatorname{asin}{\left(u \right)} + \frac{{\color{red}{\int{\frac{1}{\sqrt{v}} d v}}}}{2}\right)=z \left(u \operatorname{asin}{\left(u \right)} + \frac{{\color{red}{\int{v^{- \frac{1}{2}} d v}}}}{2}\right)=z \left(u \operatorname{asin}{\left(u \right)} + \frac{{\color{red}{\frac{v^{- \frac{1}{2} + 1}}{- \frac{1}{2} + 1}}}}{2}\right)=z \left(u \operatorname{asin}{\left(u \right)} + \frac{{\color{red}{\left(2 v^{\frac{1}{2}}\right)}}}{2}\right)=z \left(u \operatorname{asin}{\left(u \right)} + \frac{{\color{red}{\left(2 \sqrt{v}\right)}}}{2}\right)$$

次のことを思い出してください $$$v=1 - u^{2}$$$:

$$z \left(u \operatorname{asin}{\left(u \right)} + \sqrt{{\color{red}{v}}}\right) = z \left(u \operatorname{asin}{\left(u \right)} + \sqrt{{\color{red}{\left(1 - u^{2}\right)}}}\right)$$

次のことを思い出してください $$$u=\ln{\left(x \right)}$$$:

$$z \left(\sqrt{1 - {\color{red}{u}}^{2}} + {\color{red}{u}} \operatorname{asin}{\left({\color{red}{u}} \right)}\right) = z \left(\sqrt{1 - {\color{red}{\ln{\left(x \right)}}}^{2}} + {\color{red}{\ln{\left(x \right)}}} \operatorname{asin}{\left({\color{red}{\ln{\left(x \right)}}} \right)}\right)$$

したがって、

$$\int{\frac{z \operatorname{asin}{\left(\ln{\left(x \right)} \right)}}{x} d x} = z \left(\sqrt{1 - \ln{\left(x \right)}^{2}} + \ln{\left(x \right)} \operatorname{asin}{\left(\ln{\left(x \right)} \right)}\right)$$

積分定数を加える:

$$\int{\frac{z \operatorname{asin}{\left(\ln{\left(x \right)} \right)}}{x} d x} = z \left(\sqrt{1 - \ln{\left(x \right)}^{2}} + \ln{\left(x \right)} \operatorname{asin}{\left(\ln{\left(x \right)} \right)}\right)+C$$

解答

$$$\int \frac{z \operatorname{asin}{\left(\ln\left(x\right) \right)}}{x}\, dx = z \left(\sqrt{1 - \ln^{2}\left(x\right)} + \ln\left(x\right) \operatorname{asin}{\left(\ln\left(x\right) \right)}\right) + C$$$A


Please try a new game Rotatly