$$$x y^{x}$$$$$$x$$$ に関する積分

この計算機は、$$$x$$$ に関して $$$x y^{x}$$$ の積分/原始関数を、手順を示しながら求めます。

関連する計算機: 定積分・広義積分計算機

$$$dx$$$$$$dy$$$ などの微分記号を使わずに書いてください。
自動検出のため、空欄のままにしてください。

計算機が計算を実行できなかった場合、エラーを見つけた場合、またはご提案・フィードバックがある場合は、お問い合わせください

入力内容

$$$\int x y^{x}\, dx$$$ を求めよ。

解答

積分 $$$\int{x y^{x} d x}$$$ には、部分積分法$$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$を用いてください。

$$$\operatorname{u}=x$$$$$$\operatorname{dv}=y^{x} dx$$$ とする。

したがって、$$$\operatorname{du}=\left(x\right)^{\prime }dx=1 dx$$$(手順は»を参照)および$$$\operatorname{v}=\int{y^{x} d x}=\frac{y^{x}}{\ln{\left(y \right)}}$$$(手順は»を参照)。

この積分は次のように書き換えられる

$${\color{red}{\int{x y^{x} d x}}}={\color{red}{\left(x \cdot \frac{y^{x}}{\ln{\left(y \right)}}-\int{\frac{y^{x}}{\ln{\left(y \right)}} \cdot 1 d x}\right)}}={\color{red}{\left(\frac{x y^{x}}{\ln{\left(y \right)}} - \int{\frac{y^{x}}{\ln{\left(y \right)}} d x}\right)}}$$

定数倍の法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ を、$$$c=\frac{1}{\ln{\left(y \right)}}$$$$$$f{\left(x \right)} = y^{x}$$$ に対して適用する:

$$\frac{x y^{x}}{\ln{\left(y \right)}} - {\color{red}{\int{\frac{y^{x}}{\ln{\left(y \right)}} d x}}} = \frac{x y^{x}}{\ln{\left(y \right)}} - {\color{red}{\frac{\int{y^{x} d x}}{\ln{\left(y \right)}}}}$$

Apply the exponential rule $$$\int{a^{x} d x} = \frac{a^{x}}{\ln{\left(a \right)}}$$$ with $$$a=y$$$:

$$\frac{x y^{x}}{\ln{\left(y \right)}} - \frac{{\color{red}{\int{y^{x} d x}}}}{\ln{\left(y \right)}} = \frac{x y^{x}}{\ln{\left(y \right)}} - \frac{{\color{red}{\frac{y^{x}}{\ln{\left(y \right)}}}}}{\ln{\left(y \right)}}$$

したがって、

$$\int{x y^{x} d x} = \frac{x y^{x}}{\ln{\left(y \right)}} - \frac{y^{x}}{\ln{\left(y \right)}^{2}}$$

簡単化せよ:

$$\int{x y^{x} d x} = \frac{y^{x} \left(x \ln{\left(y \right)} - 1\right)}{\ln{\left(y \right)}^{2}}$$

積分定数を加える:

$$\int{x y^{x} d x} = \frac{y^{x} \left(x \ln{\left(y \right)} - 1\right)}{\ln{\left(y \right)}^{2}}+C$$

解答

$$$\int x y^{x}\, dx = \frac{y^{x} \left(x \ln\left(y\right) - 1\right)}{\ln^{2}\left(y\right)} + C$$$A


Please try a new game Rotatly