$$$x \ln\left(x + 1\right)$$$の積分
入力内容
$$$\int x \ln\left(x + 1\right)\, dx$$$ を求めよ。
解答
積分 $$$\int{x \ln{\left(x + 1 \right)} d x}$$$ には、部分積分法$$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$を用いてください。
$$$\operatorname{u}=\ln{\left(x + 1 \right)}$$$ と $$$\operatorname{dv}=x dx$$$ とする。
したがって、$$$\operatorname{du}=\left(\ln{\left(x + 1 \right)}\right)^{\prime }dx=\frac{dx}{x + 1}$$$(手順は»を参照)および$$$\operatorname{v}=\int{x d x}=\frac{x^{2}}{2}$$$(手順は»を参照)。
したがって、
$${\color{red}{\int{x \ln{\left(x + 1 \right)} d x}}}={\color{red}{\left(\ln{\left(x + 1 \right)} \cdot \frac{x^{2}}{2}-\int{\frac{x^{2}}{2} \cdot \frac{1}{x + 1} d x}\right)}}={\color{red}{\left(\frac{x^{2} \ln{\left(x + 1 \right)}}{2} - \int{\frac{x^{2}}{2 x + 2} d x}\right)}}$$
被積分関数を簡単化する:
$$\frac{x^{2} \ln{\left(x + 1 \right)}}{2} - {\color{red}{\int{\frac{x^{2}}{2 x + 2} d x}}} = \frac{x^{2} \ln{\left(x + 1 \right)}}{2} - {\color{red}{\int{\frac{x^{2}}{2 \left(x + 1\right)} d x}}}$$
定数倍の法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ を、$$$c=\frac{1}{2}$$$ と $$$f{\left(x \right)} = \frac{x^{2}}{x + 1}$$$ に対して適用する:
$$\frac{x^{2} \ln{\left(x + 1 \right)}}{2} - {\color{red}{\int{\frac{x^{2}}{2 \left(x + 1\right)} d x}}} = \frac{x^{2} \ln{\left(x + 1 \right)}}{2} - {\color{red}{\left(\frac{\int{\frac{x^{2}}{x + 1} d x}}{2}\right)}}$$
分子の次数が分母の次数以上であるため、多項式の長除法を行います(手順は»で確認できます):
$$\frac{x^{2} \ln{\left(x + 1 \right)}}{2} - \frac{{\color{red}{\int{\frac{x^{2}}{x + 1} d x}}}}{2} = \frac{x^{2} \ln{\left(x + 1 \right)}}{2} - \frac{{\color{red}{\int{\left(x - 1 + \frac{1}{x + 1}\right)d x}}}}{2}$$
項別に積分せよ:
$$\frac{x^{2} \ln{\left(x + 1 \right)}}{2} - \frac{{\color{red}{\int{\left(x - 1 + \frac{1}{x + 1}\right)d x}}}}{2} = \frac{x^{2} \ln{\left(x + 1 \right)}}{2} - \frac{{\color{red}{\left(- \int{1 d x} + \int{x d x} + \int{\frac{1}{x + 1} d x}\right)}}}{2}$$
$$$c=1$$$ に対して定数則 $$$\int c\, dx = c x$$$ を適用する:
$$\frac{x^{2} \ln{\left(x + 1 \right)}}{2} - \frac{\int{x d x}}{2} - \frac{\int{\frac{1}{x + 1} d x}}{2} + \frac{{\color{red}{\int{1 d x}}}}{2} = \frac{x^{2} \ln{\left(x + 1 \right)}}{2} - \frac{\int{x d x}}{2} - \frac{\int{\frac{1}{x + 1} d x}}{2} + \frac{{\color{red}{x}}}{2}$$
$$$n=1$$$ を用いて、べき乗の法則 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ を適用します:
$$\frac{x^{2} \ln{\left(x + 1 \right)}}{2} + \frac{x}{2} - \frac{\int{\frac{1}{x + 1} d x}}{2} - \frac{{\color{red}{\int{x d x}}}}{2}=\frac{x^{2} \ln{\left(x + 1 \right)}}{2} + \frac{x}{2} - \frac{\int{\frac{1}{x + 1} d x}}{2} - \frac{{\color{red}{\frac{x^{1 + 1}}{1 + 1}}}}{2}=\frac{x^{2} \ln{\left(x + 1 \right)}}{2} + \frac{x}{2} - \frac{\int{\frac{1}{x + 1} d x}}{2} - \frac{{\color{red}{\left(\frac{x^{2}}{2}\right)}}}{2}$$
$$$u=x + 1$$$ とする。
すると $$$du=\left(x + 1\right)^{\prime }dx = 1 dx$$$(手順は»で確認できます)、$$$dx = du$$$ となります。
したがって、
$$\frac{x^{2} \ln{\left(x + 1 \right)}}{2} - \frac{x^{2}}{4} + \frac{x}{2} - \frac{{\color{red}{\int{\frac{1}{x + 1} d x}}}}{2} = \frac{x^{2} \ln{\left(x + 1 \right)}}{2} - \frac{x^{2}}{4} + \frac{x}{2} - \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2}$$
$$$\frac{1}{u}$$$ の不定積分は $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$ です:
$$\frac{x^{2} \ln{\left(x + 1 \right)}}{2} - \frac{x^{2}}{4} + \frac{x}{2} - \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2} = \frac{x^{2} \ln{\left(x + 1 \right)}}{2} - \frac{x^{2}}{4} + \frac{x}{2} - \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{2}$$
次のことを思い出してください $$$u=x + 1$$$:
$$\frac{x^{2} \ln{\left(x + 1 \right)}}{2} - \frac{x^{2}}{4} + \frac{x}{2} - \frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{2} = \frac{x^{2} \ln{\left(x + 1 \right)}}{2} - \frac{x^{2}}{4} + \frac{x}{2} - \frac{\ln{\left(\left|{{\color{red}{\left(x + 1\right)}}}\right| \right)}}{2}$$
したがって、
$$\int{x \ln{\left(x + 1 \right)} d x} = \frac{x^{2} \ln{\left(x + 1 \right)}}{2} - \frac{x^{2}}{4} + \frac{x}{2} - \frac{\ln{\left(\left|{x + 1}\right| \right)}}{2}$$
積分定数を加える:
$$\int{x \ln{\left(x + 1 \right)} d x} = \frac{x^{2} \ln{\left(x + 1 \right)}}{2} - \frac{x^{2}}{4} + \frac{x}{2} - \frac{\ln{\left(\left|{x + 1}\right| \right)}}{2}+C$$
解答
$$$\int x \ln\left(x + 1\right)\, dx = \left(\frac{x^{2} \ln\left(x + 1\right)}{2} - \frac{x^{2}}{4} + \frac{x}{2} - \frac{\ln\left(\left|{x + 1}\right|\right)}{2}\right) + C$$$A