$$$x e^{3 x}$$$の積分
入力内容
$$$\int x e^{3 x}\, dx$$$ を求めよ。
解答
積分 $$$\int{x e^{3 x} d x}$$$ には、部分積分法$$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$を用いてください。
$$$\operatorname{u}=x$$$ と $$$\operatorname{dv}=e^{3 x} dx$$$ とする。
したがって、$$$\operatorname{du}=\left(x\right)^{\prime }dx=1 dx$$$(手順は»を参照)および$$$\operatorname{v}=\int{e^{3 x} d x}=\frac{e^{3 x}}{3}$$$(手順は»を参照)。
したがって、
$${\color{red}{\int{x e^{3 x} d x}}}={\color{red}{\left(x \cdot \frac{e^{3 x}}{3}-\int{\frac{e^{3 x}}{3} \cdot 1 d x}\right)}}={\color{red}{\left(\frac{x e^{3 x}}{3} - \int{\frac{e^{3 x}}{3} d x}\right)}}$$
定数倍の法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ を、$$$c=\frac{1}{3}$$$ と $$$f{\left(x \right)} = e^{3 x}$$$ に対して適用する:
$$\frac{x e^{3 x}}{3} - {\color{red}{\int{\frac{e^{3 x}}{3} d x}}} = \frac{x e^{3 x}}{3} - {\color{red}{\left(\frac{\int{e^{3 x} d x}}{3}\right)}}$$
$$$u=3 x$$$ とする。
すると $$$du=\left(3 x\right)^{\prime }dx = 3 dx$$$(手順は»で確認できます)、$$$dx = \frac{du}{3}$$$ となります。
したがって、
$$\frac{x e^{3 x}}{3} - \frac{{\color{red}{\int{e^{3 x} d x}}}}{3} = \frac{x e^{3 x}}{3} - \frac{{\color{red}{\int{\frac{e^{u}}{3} d u}}}}{3}$$
定数倍の法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ を、$$$c=\frac{1}{3}$$$ と $$$f{\left(u \right)} = e^{u}$$$ に対して適用する:
$$\frac{x e^{3 x}}{3} - \frac{{\color{red}{\int{\frac{e^{u}}{3} d u}}}}{3} = \frac{x e^{3 x}}{3} - \frac{{\color{red}{\left(\frac{\int{e^{u} d u}}{3}\right)}}}{3}$$
指数関数の積分は $$$\int{e^{u} d u} = e^{u}$$$です:
$$\frac{x e^{3 x}}{3} - \frac{{\color{red}{\int{e^{u} d u}}}}{9} = \frac{x e^{3 x}}{3} - \frac{{\color{red}{e^{u}}}}{9}$$
次のことを思い出してください $$$u=3 x$$$:
$$\frac{x e^{3 x}}{3} - \frac{e^{{\color{red}{u}}}}{9} = \frac{x e^{3 x}}{3} - \frac{e^{{\color{red}{\left(3 x\right)}}}}{9}$$
したがって、
$$\int{x e^{3 x} d x} = \frac{x e^{3 x}}{3} - \frac{e^{3 x}}{9}$$
簡単化せよ:
$$\int{x e^{3 x} d x} = \frac{\left(3 x - 1\right) e^{3 x}}{9}$$
積分定数を加える:
$$\int{x e^{3 x} d x} = \frac{\left(3 x - 1\right) e^{3 x}}{9}+C$$
解答
$$$\int x e^{3 x}\, dx = \frac{\left(3 x - 1\right) e^{3 x}}{9} + C$$$A