$$$\frac{x^{3}}{z} - 2$$$ の $$$x$$$ に関する積分
入力内容
$$$\int \left(\frac{x^{3}}{z} - 2\right)\, dx$$$ を求めよ。
解答
項別に積分せよ:
$${\color{red}{\int{\left(\frac{x^{3}}{z} - 2\right)d x}}} = {\color{red}{\left(- \int{2 d x} + \int{\frac{x^{3}}{z} d x}\right)}}$$
$$$c=2$$$ に対して定数則 $$$\int c\, dx = c x$$$ を適用する:
$$\int{\frac{x^{3}}{z} d x} - {\color{red}{\int{2 d x}}} = \int{\frac{x^{3}}{z} d x} - {\color{red}{\left(2 x\right)}}$$
定数倍の法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ を、$$$c=\frac{1}{z}$$$ と $$$f{\left(x \right)} = x^{3}$$$ に対して適用する:
$$- 2 x + {\color{red}{\int{\frac{x^{3}}{z} d x}}} = - 2 x + {\color{red}{\frac{\int{x^{3} d x}}{z}}}$$
$$$n=3$$$ を用いて、べき乗の法則 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ を適用します:
$$- 2 x + \frac{{\color{red}{\int{x^{3} d x}}}}{z}=- 2 x + \frac{{\color{red}{\frac{x^{1 + 3}}{1 + 3}}}}{z}=- 2 x + \frac{{\color{red}{\left(\frac{x^{4}}{4}\right)}}}{z}$$
したがって、
$$\int{\left(\frac{x^{3}}{z} - 2\right)d x} = \frac{x^{4}}{4 z} - 2 x$$
積分定数を加える:
$$\int{\left(\frac{x^{3}}{z} - 2\right)d x} = \frac{x^{4}}{4 z} - 2 x+C$$
解答
$$$\int \left(\frac{x^{3}}{z} - 2\right)\, dx = \left(\frac{x^{4}}{4 z} - 2 x\right) + C$$$A