$$$\frac{x^{3}}{2 \left(25 - x^{2}\right)}$$$の積分

この計算機は、手順を示しながら$$$\frac{x^{3}}{2 \left(25 - x^{2}\right)}$$$の不定積分(原始関数)を求めます。

関連する計算機: 定積分・広義積分計算機

$$$dx$$$$$$dy$$$ などの微分記号を使わずに書いてください。
自動検出のため、空欄のままにしてください。

計算機が計算を実行できなかった場合、エラーを見つけた場合、またはご提案・フィードバックがある場合は、お問い合わせください

入力内容

$$$\int \frac{x^{3}}{2 \left(25 - x^{2}\right)}\, dx$$$ を求めよ。

解答

定数倍の法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ を、$$$c=\frac{1}{2}$$$$$$f{\left(x \right)} = \frac{x^{3}}{25 - x^{2}}$$$ に対して適用する:

$${\color{red}{\int{\frac{x^{3}}{2 \left(25 - x^{2}\right)} d x}}} = {\color{red}{\left(\frac{\int{\frac{x^{3}}{25 - x^{2}} d x}}{2}\right)}}$$

分子の次数が分母の次数以上であるため、多項式の長除法を行います(手順は»で確認できます):

$$\frac{{\color{red}{\int{\frac{x^{3}}{25 - x^{2}} d x}}}}{2} = \frac{{\color{red}{\int{\left(- x + \frac{25 x}{25 - x^{2}}\right)d x}}}}{2}$$

項別に積分せよ:

$$\frac{{\color{red}{\int{\left(- x + \frac{25 x}{25 - x^{2}}\right)d x}}}}{2} = \frac{{\color{red}{\left(- \int{x d x} + \int{\frac{25 x}{25 - x^{2}} d x}\right)}}}{2}$$

$$$n=1$$$ を用いて、べき乗の法則 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ を適用します:

$$\frac{\int{\frac{25 x}{25 - x^{2}} d x}}{2} - \frac{{\color{red}{\int{x d x}}}}{2}=\frac{\int{\frac{25 x}{25 - x^{2}} d x}}{2} - \frac{{\color{red}{\frac{x^{1 + 1}}{1 + 1}}}}{2}=\frac{\int{\frac{25 x}{25 - x^{2}} d x}}{2} - \frac{{\color{red}{\left(\frac{x^{2}}{2}\right)}}}{2}$$

$$$u=25 - x^{2}$$$ とする。

すると $$$du=\left(25 - x^{2}\right)^{\prime }dx = - 2 x dx$$$(手順は»で確認できます)、$$$x dx = - \frac{du}{2}$$$ となります。

この積分は次のように書き換えられる

$$- \frac{x^{2}}{4} + \frac{{\color{red}{\int{\frac{25 x}{25 - x^{2}} d x}}}}{2} = - \frac{x^{2}}{4} + \frac{{\color{red}{\int{\left(- \frac{25}{2 u}\right)d u}}}}{2}$$

定数倍の法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ を、$$$c=- \frac{25}{2}$$$$$$f{\left(u \right)} = \frac{1}{u}$$$ に対して適用する:

$$- \frac{x^{2}}{4} + \frac{{\color{red}{\int{\left(- \frac{25}{2 u}\right)d u}}}}{2} = - \frac{x^{2}}{4} + \frac{{\color{red}{\left(- \frac{25 \int{\frac{1}{u} d u}}{2}\right)}}}{2}$$

$$$\frac{1}{u}$$$ の不定積分は $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$ です:

$$- \frac{x^{2}}{4} - \frac{25 {\color{red}{\int{\frac{1}{u} d u}}}}{4} = - \frac{x^{2}}{4} - \frac{25 {\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{4}$$

次のことを思い出してください $$$u=25 - x^{2}$$$:

$$- \frac{x^{2}}{4} - \frac{25 \ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{4} = - \frac{x^{2}}{4} - \frac{25 \ln{\left(\left|{{\color{red}{\left(25 - x^{2}\right)}}}\right| \right)}}{4}$$

したがって、

$$\int{\frac{x^{3}}{2 \left(25 - x^{2}\right)} d x} = - \frac{x^{2}}{4} - \frac{25 \ln{\left(\left|{x^{2} - 25}\right| \right)}}{4}$$

積分定数を加える:

$$\int{\frac{x^{3}}{2 \left(25 - x^{2}\right)} d x} = - \frac{x^{2}}{4} - \frac{25 \ln{\left(\left|{x^{2} - 25}\right| \right)}}{4}+C$$

解答

$$$\int \frac{x^{3}}{2 \left(25 - x^{2}\right)}\, dx = \left(- \frac{x^{2}}{4} - \frac{25 \ln\left(\left|{x^{2} - 25}\right|\right)}{4}\right) + C$$$A


Please try a new game Rotatly