$$$x^{2} \cos{\left(3 x \right)}$$$の積分

この計算機は、手順を示しながら$$$x^{2} \cos{\left(3 x \right)}$$$の不定積分(原始関数)を求めます。

関連する計算機: 定積分・広義積分計算機

$$$dx$$$$$$dy$$$ などの微分記号を使わずに書いてください。
自動検出のため、空欄のままにしてください。

計算機が計算を実行できなかった場合、エラーを見つけた場合、またはご提案・フィードバックがある場合は、お問い合わせください

入力内容

$$$\int x^{2} \cos{\left(3 x \right)}\, dx$$$ を求めよ。

解答

積分 $$$\int{x^{2} \cos{\left(3 x \right)} d x}$$$ には、部分積分法$$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$を用いてください。

$$$\operatorname{u}=x^{2}$$$$$$\operatorname{dv}=\cos{\left(3 x \right)} dx$$$ とする。

したがって、$$$\operatorname{du}=\left(x^{2}\right)^{\prime }dx=2 x dx$$$(手順は»を参照)および$$$\operatorname{v}=\int{\cos{\left(3 x \right)} d x}=\frac{\sin{\left(3 x \right)}}{3}$$$(手順は»を参照)。

したがって、

$${\color{red}{\int{x^{2} \cos{\left(3 x \right)} d x}}}={\color{red}{\left(x^{2} \cdot \frac{\sin{\left(3 x \right)}}{3}-\int{\frac{\sin{\left(3 x \right)}}{3} \cdot 2 x d x}\right)}}={\color{red}{\left(\frac{x^{2} \sin{\left(3 x \right)}}{3} - \int{\frac{2 x \sin{\left(3 x \right)}}{3} d x}\right)}}$$

定数倍の法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ を、$$$c=\frac{2}{3}$$$$$$f{\left(x \right)} = x \sin{\left(3 x \right)}$$$ に対して適用する:

$$\frac{x^{2} \sin{\left(3 x \right)}}{3} - {\color{red}{\int{\frac{2 x \sin{\left(3 x \right)}}{3} d x}}} = \frac{x^{2} \sin{\left(3 x \right)}}{3} - {\color{red}{\left(\frac{2 \int{x \sin{\left(3 x \right)} d x}}{3}\right)}}$$

積分 $$$\int{x \sin{\left(3 x \right)} d x}$$$ には、部分積分法$$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$を用いてください。

$$$\operatorname{u}=x$$$$$$\operatorname{dv}=\sin{\left(3 x \right)} dx$$$ とする。

したがって、$$$\operatorname{du}=\left(x\right)^{\prime }dx=1 dx$$$(手順は»を参照)および$$$\operatorname{v}=\int{\sin{\left(3 x \right)} d x}=- \frac{\cos{\left(3 x \right)}}{3}$$$(手順は»を参照)。

積分は次のようになります

$$\frac{x^{2} \sin{\left(3 x \right)}}{3} - \frac{2 {\color{red}{\int{x \sin{\left(3 x \right)} d x}}}}{3}=\frac{x^{2} \sin{\left(3 x \right)}}{3} - \frac{2 {\color{red}{\left(x \cdot \left(- \frac{\cos{\left(3 x \right)}}{3}\right)-\int{\left(- \frac{\cos{\left(3 x \right)}}{3}\right) \cdot 1 d x}\right)}}}{3}=\frac{x^{2} \sin{\left(3 x \right)}}{3} - \frac{2 {\color{red}{\left(- \frac{x \cos{\left(3 x \right)}}{3} - \int{\left(- \frac{\cos{\left(3 x \right)}}{3}\right)d x}\right)}}}{3}$$

定数倍の法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ を、$$$c=- \frac{1}{3}$$$$$$f{\left(x \right)} = \cos{\left(3 x \right)}$$$ に対して適用する:

$$\frac{x^{2} \sin{\left(3 x \right)}}{3} + \frac{2 x \cos{\left(3 x \right)}}{9} + \frac{2 {\color{red}{\int{\left(- \frac{\cos{\left(3 x \right)}}{3}\right)d x}}}}{3} = \frac{x^{2} \sin{\left(3 x \right)}}{3} + \frac{2 x \cos{\left(3 x \right)}}{9} + \frac{2 {\color{red}{\left(- \frac{\int{\cos{\left(3 x \right)} d x}}{3}\right)}}}{3}$$

$$$u=3 x$$$ とする。

すると $$$du=\left(3 x\right)^{\prime }dx = 3 dx$$$(手順は»で確認できます)、$$$dx = \frac{du}{3}$$$ となります。

したがって、

$$\frac{x^{2} \sin{\left(3 x \right)}}{3} + \frac{2 x \cos{\left(3 x \right)}}{9} - \frac{2 {\color{red}{\int{\cos{\left(3 x \right)} d x}}}}{9} = \frac{x^{2} \sin{\left(3 x \right)}}{3} + \frac{2 x \cos{\left(3 x \right)}}{9} - \frac{2 {\color{red}{\int{\frac{\cos{\left(u \right)}}{3} d u}}}}{9}$$

定数倍の法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ を、$$$c=\frac{1}{3}$$$$$$f{\left(u \right)} = \cos{\left(u \right)}$$$ に対して適用する:

$$\frac{x^{2} \sin{\left(3 x \right)}}{3} + \frac{2 x \cos{\left(3 x \right)}}{9} - \frac{2 {\color{red}{\int{\frac{\cos{\left(u \right)}}{3} d u}}}}{9} = \frac{x^{2} \sin{\left(3 x \right)}}{3} + \frac{2 x \cos{\left(3 x \right)}}{9} - \frac{2 {\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{3}\right)}}}{9}$$

余弦の積分は$$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:

$$\frac{x^{2} \sin{\left(3 x \right)}}{3} + \frac{2 x \cos{\left(3 x \right)}}{9} - \frac{2 {\color{red}{\int{\cos{\left(u \right)} d u}}}}{27} = \frac{x^{2} \sin{\left(3 x \right)}}{3} + \frac{2 x \cos{\left(3 x \right)}}{9} - \frac{2 {\color{red}{\sin{\left(u \right)}}}}{27}$$

次のことを思い出してください $$$u=3 x$$$:

$$\frac{x^{2} \sin{\left(3 x \right)}}{3} + \frac{2 x \cos{\left(3 x \right)}}{9} - \frac{2 \sin{\left({\color{red}{u}} \right)}}{27} = \frac{x^{2} \sin{\left(3 x \right)}}{3} + \frac{2 x \cos{\left(3 x \right)}}{9} - \frac{2 \sin{\left({\color{red}{\left(3 x\right)}} \right)}}{27}$$

したがって、

$$\int{x^{2} \cos{\left(3 x \right)} d x} = \frac{x^{2} \sin{\left(3 x \right)}}{3} + \frac{2 x \cos{\left(3 x \right)}}{9} - \frac{2 \sin{\left(3 x \right)}}{27}$$

簡単化せよ:

$$\int{x^{2} \cos{\left(3 x \right)} d x} = \frac{9 x^{2} \sin{\left(3 x \right)} + 6 x \cos{\left(3 x \right)} - 2 \sin{\left(3 x \right)}}{27}$$

積分定数を加える:

$$\int{x^{2} \cos{\left(3 x \right)} d x} = \frac{9 x^{2} \sin{\left(3 x \right)} + 6 x \cos{\left(3 x \right)} - 2 \sin{\left(3 x \right)}}{27}+C$$

解答

$$$\int x^{2} \cos{\left(3 x \right)}\, dx = \frac{9 x^{2} \sin{\left(3 x \right)} + 6 x \cos{\left(3 x \right)} - 2 \sin{\left(3 x \right)}}{27} + C$$$A


Please try a new game Rotatly