$$$x^{2} - 38 \sin{\left(x \right)}$$$の積分
入力内容
$$$\int \left(x^{2} - 38 \sin{\left(x \right)}\right)\, dx$$$ を求めよ。
解答
項別に積分せよ:
$${\color{red}{\int{\left(x^{2} - 38 \sin{\left(x \right)}\right)d x}}} = {\color{red}{\left(\int{x^{2} d x} - \int{38 \sin{\left(x \right)} d x}\right)}}$$
$$$n=2$$$ を用いて、べき乗の法則 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ を適用します:
$$- \int{38 \sin{\left(x \right)} d x} + {\color{red}{\int{x^{2} d x}}}=- \int{38 \sin{\left(x \right)} d x} + {\color{red}{\frac{x^{1 + 2}}{1 + 2}}}=- \int{38 \sin{\left(x \right)} d x} + {\color{red}{\left(\frac{x^{3}}{3}\right)}}$$
定数倍の法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ を、$$$c=38$$$ と $$$f{\left(x \right)} = \sin{\left(x \right)}$$$ に対して適用する:
$$\frac{x^{3}}{3} - {\color{red}{\int{38 \sin{\left(x \right)} d x}}} = \frac{x^{3}}{3} - {\color{red}{\left(38 \int{\sin{\left(x \right)} d x}\right)}}$$
正弦関数の不定積分は$$$\int{\sin{\left(x \right)} d x} = - \cos{\left(x \right)}$$$です:
$$\frac{x^{3}}{3} - 38 {\color{red}{\int{\sin{\left(x \right)} d x}}} = \frac{x^{3}}{3} - 38 {\color{red}{\left(- \cos{\left(x \right)}\right)}}$$
したがって、
$$\int{\left(x^{2} - 38 \sin{\left(x \right)}\right)d x} = \frac{x^{3}}{3} + 38 \cos{\left(x \right)}$$
積分定数を加える:
$$\int{\left(x^{2} - 38 \sin{\left(x \right)}\right)d x} = \frac{x^{3}}{3} + 38 \cos{\left(x \right)}+C$$
解答
$$$\int \left(x^{2} - 38 \sin{\left(x \right)}\right)\, dx = \left(\frac{x^{3}}{3} + 38 \cos{\left(x \right)}\right) + C$$$A