$$$x^{2} - 2 y$$$ の $$$x$$$ に関する積分
入力内容
$$$\int \left(x^{2} - 2 y\right)\, dx$$$ を求めよ。
解答
項別に積分せよ:
$${\color{red}{\int{\left(x^{2} - 2 y\right)d x}}} = {\color{red}{\left(\int{x^{2} d x} - \int{2 y d x}\right)}}$$
$$$n=2$$$ を用いて、べき乗の法則 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ を適用します:
$$- \int{2 y d x} + {\color{red}{\int{x^{2} d x}}}=- \int{2 y d x} + {\color{red}{\frac{x^{1 + 2}}{1 + 2}}}=- \int{2 y d x} + {\color{red}{\left(\frac{x^{3}}{3}\right)}}$$
$$$c=2 y$$$ に対して定数則 $$$\int c\, dx = c x$$$ を適用する:
$$\frac{x^{3}}{3} - {\color{red}{\int{2 y d x}}} = \frac{x^{3}}{3} - {\color{red}{\left(2 x y\right)}}$$
したがって、
$$\int{\left(x^{2} - 2 y\right)d x} = \frac{x^{3}}{3} - 2 x y$$
簡単化せよ:
$$\int{\left(x^{2} - 2 y\right)d x} = \frac{x \left(x^{2} - 6 y\right)}{3}$$
積分定数を加える:
$$\int{\left(x^{2} - 2 y\right)d x} = \frac{x \left(x^{2} - 6 y\right)}{3}+C$$
解答
$$$\int \left(x^{2} - 2 y\right)\, dx = \frac{x \left(x^{2} - 6 y\right)}{3} + C$$$A