$$$x^{5} \ln\left(7 x\right)$$$の積分
入力内容
$$$\int x^{5} \ln\left(7 x\right)\, dx$$$ を求めよ。
解答
積分 $$$\int{x^{5} \ln{\left(7 x \right)} d x}$$$ には、部分積分法$$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$を用いてください。
$$$\operatorname{u}=\ln{\left(7 x \right)}$$$ と $$$\operatorname{dv}=x^{5} dx$$$ とする。
したがって、$$$\operatorname{du}=\left(\ln{\left(7 x \right)}\right)^{\prime }dx=\frac{dx}{x}$$$(手順は»を参照)および$$$\operatorname{v}=\int{x^{5} d x}=\frac{x^{6}}{6}$$$(手順は»を参照)。
積分は次のようになります
$${\color{red}{\int{x^{5} \ln{\left(7 x \right)} d x}}}={\color{red}{\left(\ln{\left(7 x \right)} \cdot \frac{x^{6}}{6}-\int{\frac{x^{6}}{6} \cdot \frac{1}{x} d x}\right)}}={\color{red}{\left(\frac{x^{6} \ln{\left(7 x \right)}}{6} - \int{\frac{x^{5}}{6} d x}\right)}}$$
定数倍の法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ を、$$$c=\frac{1}{6}$$$ と $$$f{\left(x \right)} = x^{5}$$$ に対して適用する:
$$\frac{x^{6} \ln{\left(7 x \right)}}{6} - {\color{red}{\int{\frac{x^{5}}{6} d x}}} = \frac{x^{6} \ln{\left(7 x \right)}}{6} - {\color{red}{\left(\frac{\int{x^{5} d x}}{6}\right)}}$$
$$$n=5$$$ を用いて、べき乗の法則 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ を適用します:
$$\frac{x^{6} \ln{\left(7 x \right)}}{6} - \frac{{\color{red}{\int{x^{5} d x}}}}{6}=\frac{x^{6} \ln{\left(7 x \right)}}{6} - \frac{{\color{red}{\frac{x^{1 + 5}}{1 + 5}}}}{6}=\frac{x^{6} \ln{\left(7 x \right)}}{6} - \frac{{\color{red}{\left(\frac{x^{6}}{6}\right)}}}{6}$$
したがって、
$$\int{x^{5} \ln{\left(7 x \right)} d x} = \frac{x^{6} \ln{\left(7 x \right)}}{6} - \frac{x^{6}}{36}$$
簡単化せよ:
$$\int{x^{5} \ln{\left(7 x \right)} d x} = \frac{x^{6} \left(6 \ln{\left(x \right)} - 1 + 6 \ln{\left(7 \right)}\right)}{36}$$
積分定数を加える:
$$\int{x^{5} \ln{\left(7 x \right)} d x} = \frac{x^{6} \left(6 \ln{\left(x \right)} - 1 + 6 \ln{\left(7 \right)}\right)}{36}+C$$
解答
$$$\int x^{5} \ln\left(7 x\right)\, dx = \frac{x^{6} \left(6 \ln\left(x\right) - 1 + 6 \ln\left(7\right)\right)}{36} + C$$$A