$$$\frac{x}{k - x^{2}}$$$$$$x$$$ に関する積分

この計算機は、$$$x$$$ に関して $$$\frac{x}{k - x^{2}}$$$ の積分/原始関数を、手順を示しながら求めます。

関連する計算機: 定積分・広義積分計算機

$$$dx$$$$$$dy$$$ などの微分記号を使わずに書いてください。
自動検出のため、空欄のままにしてください。

計算機が計算を実行できなかった場合、エラーを見つけた場合、またはご提案・フィードバックがある場合は、お問い合わせください

入力内容

$$$\int \frac{x}{k - x^{2}}\, dx$$$ を求めよ。

解答

$$$u=k - x^{2}$$$ とする。

すると $$$du=\left(k - x^{2}\right)^{\prime }dx = - 2 x dx$$$(手順は»で確認できます)、$$$x dx = - \frac{du}{2}$$$ となります。

したがって、

$${\color{red}{\int{\frac{x}{k - x^{2}} d x}}} = {\color{red}{\int{\left(- \frac{1}{2 u}\right)d u}}}$$

定数倍の法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ を、$$$c=- \frac{1}{2}$$$$$$f{\left(u \right)} = \frac{1}{u}$$$ に対して適用する:

$${\color{red}{\int{\left(- \frac{1}{2 u}\right)d u}}} = {\color{red}{\left(- \frac{\int{\frac{1}{u} d u}}{2}\right)}}$$

$$$\frac{1}{u}$$$ の不定積分は $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$ です:

$$- \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2} = - \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{2}$$

次のことを思い出してください $$$u=k - x^{2}$$$:

$$- \frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{2} = - \frac{\ln{\left(\left|{{\color{red}{\left(k - x^{2}\right)}}}\right| \right)}}{2}$$

したがって、

$$\int{\frac{x}{k - x^{2}} d x} = - \frac{\ln{\left(\left|{k - x^{2}}\right| \right)}}{2}$$

積分定数を加える:

$$\int{\frac{x}{k - x^{2}} d x} = - \frac{\ln{\left(\left|{k - x^{2}}\right| \right)}}{2}+C$$

解答

$$$\int \frac{x}{k - x^{2}}\, dx = - \frac{\ln\left(\left|{k - x^{2}}\right|\right)}{2} + C$$$A


Please try a new game Rotatly