$$$t \sin{\left(t \right)} \cos{\left(t \right)}$$$の積分

この計算機は、手順を示しながら$$$t \sin{\left(t \right)} \cos{\left(t \right)}$$$の不定積分(原始関数)を求めます。

関連する計算機: 定積分・広義積分計算機

$$$dx$$$$$$dy$$$ などの微分記号を使わずに書いてください。
自動検出のため、空欄のままにしてください。

計算機が計算を実行できなかった場合、エラーを見つけた場合、またはご提案・フィードバックがある場合は、お問い合わせください

入力内容

$$$\int t \sin{\left(t \right)} \cos{\left(t \right)}\, dt$$$ を求めよ。

解答

積分 $$$\int{t \sin{\left(t \right)} \cos{\left(t \right)} d t}$$$ には、部分積分法$$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$を用いてください。

$$$\operatorname{u}=t$$$$$$\operatorname{dv}=\sin{\left(t \right)} \cos{\left(t \right)} dt$$$ とする。

したがって、$$$\operatorname{du}=\left(t\right)^{\prime }dt=1 dt$$$(手順は»を参照)および$$$\operatorname{v}=\int{\sin{\left(t \right)} \cos{\left(t \right)} d t}=\frac{\sin^{2}{\left(t \right)}}{2}$$$(手順は»を参照)。

この積分は次のように書き換えられる

$${\color{red}{\int{t \sin{\left(t \right)} \cos{\left(t \right)} d t}}}={\color{red}{\left(t \cdot \frac{\sin^{2}{\left(t \right)}}{2}-\int{\frac{\sin^{2}{\left(t \right)}}{2} \cdot 1 d t}\right)}}={\color{red}{\left(\frac{t \sin^{2}{\left(t \right)}}{2} - \int{\frac{\sin^{2}{\left(t \right)}}{2} d t}\right)}}$$

定数倍の法則 $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ を、$$$c=\frac{1}{2}$$$$$$f{\left(t \right)} = \sin^{2}{\left(t \right)}$$$ に対して適用する:

$$\frac{t \sin^{2}{\left(t \right)}}{2} - {\color{red}{\int{\frac{\sin^{2}{\left(t \right)}}{2} d t}}} = \frac{t \sin^{2}{\left(t \right)}}{2} - {\color{red}{\left(\frac{\int{\sin^{2}{\left(t \right)} d t}}{2}\right)}}$$

冪低減公式 $$$\sin^{2}{\left(\alpha \right)} = \frac{1}{2} - \frac{\cos{\left(2 \alpha \right)}}{2}$$$$$$\alpha=t$$$ に適用する:

$$\frac{t \sin^{2}{\left(t \right)}}{2} - \frac{{\color{red}{\int{\sin^{2}{\left(t \right)} d t}}}}{2} = \frac{t \sin^{2}{\left(t \right)}}{2} - \frac{{\color{red}{\int{\left(\frac{1}{2} - \frac{\cos{\left(2 t \right)}}{2}\right)d t}}}}{2}$$

定数倍の法則 $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ を、$$$c=\frac{1}{2}$$$$$$f{\left(t \right)} = 1 - \cos{\left(2 t \right)}$$$ に対して適用する:

$$\frac{t \sin^{2}{\left(t \right)}}{2} - \frac{{\color{red}{\int{\left(\frac{1}{2} - \frac{\cos{\left(2 t \right)}}{2}\right)d t}}}}{2} = \frac{t \sin^{2}{\left(t \right)}}{2} - \frac{{\color{red}{\left(\frac{\int{\left(1 - \cos{\left(2 t \right)}\right)d t}}{2}\right)}}}{2}$$

項別に積分せよ:

$$\frac{t \sin^{2}{\left(t \right)}}{2} - \frac{{\color{red}{\int{\left(1 - \cos{\left(2 t \right)}\right)d t}}}}{4} = \frac{t \sin^{2}{\left(t \right)}}{2} - \frac{{\color{red}{\left(\int{1 d t} - \int{\cos{\left(2 t \right)} d t}\right)}}}{4}$$

$$$c=1$$$ に対して定数則 $$$\int c\, dt = c t$$$ を適用する:

$$\frac{t \sin^{2}{\left(t \right)}}{2} + \frac{\int{\cos{\left(2 t \right)} d t}}{4} - \frac{{\color{red}{\int{1 d t}}}}{4} = \frac{t \sin^{2}{\left(t \right)}}{2} + \frac{\int{\cos{\left(2 t \right)} d t}}{4} - \frac{{\color{red}{t}}}{4}$$

$$$u=2 t$$$ とする。

すると $$$du=\left(2 t\right)^{\prime }dt = 2 dt$$$(手順は»で確認できます)、$$$dt = \frac{du}{2}$$$ となります。

この積分は次のように書き換えられる

$$\frac{t \sin^{2}{\left(t \right)}}{2} - \frac{t}{4} + \frac{{\color{red}{\int{\cos{\left(2 t \right)} d t}}}}{4} = \frac{t \sin^{2}{\left(t \right)}}{2} - \frac{t}{4} + \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}}}{4}$$

定数倍の法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ を、$$$c=\frac{1}{2}$$$$$$f{\left(u \right)} = \cos{\left(u \right)}$$$ に対して適用する:

$$\frac{t \sin^{2}{\left(t \right)}}{2} - \frac{t}{4} + \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}}}{4} = \frac{t \sin^{2}{\left(t \right)}}{2} - \frac{t}{4} + \frac{{\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{2}\right)}}}{4}$$

余弦の積分は$$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:

$$\frac{t \sin^{2}{\left(t \right)}}{2} - \frac{t}{4} + \frac{{\color{red}{\int{\cos{\left(u \right)} d u}}}}{8} = \frac{t \sin^{2}{\left(t \right)}}{2} - \frac{t}{4} + \frac{{\color{red}{\sin{\left(u \right)}}}}{8}$$

次のことを思い出してください $$$u=2 t$$$:

$$\frac{t \sin^{2}{\left(t \right)}}{2} - \frac{t}{4} + \frac{\sin{\left({\color{red}{u}} \right)}}{8} = \frac{t \sin^{2}{\left(t \right)}}{2} - \frac{t}{4} + \frac{\sin{\left({\color{red}{\left(2 t\right)}} \right)}}{8}$$

したがって、

$$\int{t \sin{\left(t \right)} \cos{\left(t \right)} d t} = \frac{t \sin^{2}{\left(t \right)}}{2} - \frac{t}{4} + \frac{\sin{\left(2 t \right)}}{8}$$

積分定数を加える:

$$\int{t \sin{\left(t \right)} \cos{\left(t \right)} d t} = \frac{t \sin^{2}{\left(t \right)}}{2} - \frac{t}{4} + \frac{\sin{\left(2 t \right)}}{8}+C$$

解答

$$$\int t \sin{\left(t \right)} \cos{\left(t \right)}\, dt = \left(\frac{t \sin^{2}{\left(t \right)}}{2} - \frac{t}{4} + \frac{\sin{\left(2 t \right)}}{8}\right) + C$$$A


Please try a new game Rotatly