$$$\sin{\left(x \right)} \sin{\left(2 x \right)} \cos{\left(x \right)}$$$の積分

この計算機は、手順を示しながら$$$\sin{\left(x \right)} \sin{\left(2 x \right)} \cos{\left(x \right)}$$$の不定積分(原始関数)を求めます。

関連する計算機: 定積分・広義積分計算機

$$$dx$$$$$$dy$$$ などの微分記号を使わずに書いてください。
自動検出のため、空欄のままにしてください。

計算機が計算を実行できなかった場合、エラーを見つけた場合、またはご提案・フィードバックがある場合は、お問い合わせください

入力内容

$$$\int \sin{\left(x \right)} \sin{\left(2 x \right)} \cos{\left(x \right)}\, dx$$$ を求めよ。

解答

$$$\sin\left(\alpha \right)\sin\left(\beta \right)=\frac{1}{2} \cos\left(\alpha-\beta \right)-\frac{1}{2} \cos\left(\alpha+\beta \right)$$$ の公式を用い、$$$\alpha=x$$$ および $$$\beta=2 x$$$ を用いて $$$\sin\left(x \right)\sin\left(2 x \right)$$$ を変形せよ:

$${\color{red}{\int{\sin{\left(x \right)} \sin{\left(2 x \right)} \cos{\left(x \right)} d x}}} = {\color{red}{\int{\left(\frac{\cos{\left(x \right)}}{2} - \frac{\cos{\left(3 x \right)}}{2}\right) \cos{\left(x \right)} d x}}}$$

式を展開:

$${\color{red}{\int{\left(\frac{\cos{\left(x \right)}}{2} - \frac{\cos{\left(3 x \right)}}{2}\right) \cos{\left(x \right)} d x}}} = {\color{red}{\int{\left(\frac{\cos^{2}{\left(x \right)}}{2} - \frac{\cos{\left(x \right)} \cos{\left(3 x \right)}}{2}\right)d x}}}$$

定数倍の法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ を、$$$c=\frac{1}{2}$$$$$$f{\left(x \right)} = \cos^{2}{\left(x \right)} - \cos{\left(x \right)} \cos{\left(3 x \right)}$$$ に対して適用する:

$${\color{red}{\int{\left(\frac{\cos^{2}{\left(x \right)}}{2} - \frac{\cos{\left(x \right)} \cos{\left(3 x \right)}}{2}\right)d x}}} = {\color{red}{\left(\frac{\int{\left(\cos^{2}{\left(x \right)} - \cos{\left(x \right)} \cos{\left(3 x \right)}\right)d x}}{2}\right)}}$$

項別に積分せよ:

$$\frac{{\color{red}{\int{\left(\cos^{2}{\left(x \right)} - \cos{\left(x \right)} \cos{\left(3 x \right)}\right)d x}}}}{2} = \frac{{\color{red}{\left(- \int{\cos{\left(x \right)} \cos{\left(3 x \right)} d x} + \int{\cos^{2}{\left(x \right)} d x}\right)}}}{2}$$

冪低減公式 $$$\cos^{2}{\left(\alpha \right)} = \frac{\cos{\left(2 \alpha \right)}}{2} + \frac{1}{2}$$$$$$\alpha=x$$$ に適用する:

$$- \frac{\int{\cos{\left(x \right)} \cos{\left(3 x \right)} d x}}{2} + \frac{{\color{red}{\int{\cos^{2}{\left(x \right)} d x}}}}{2} = - \frac{\int{\cos{\left(x \right)} \cos{\left(3 x \right)} d x}}{2} + \frac{{\color{red}{\int{\left(\frac{\cos{\left(2 x \right)}}{2} + \frac{1}{2}\right)d x}}}}{2}$$

定数倍の法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ を、$$$c=\frac{1}{2}$$$$$$f{\left(x \right)} = \cos{\left(2 x \right)} + 1$$$ に対して適用する:

$$- \frac{\int{\cos{\left(x \right)} \cos{\left(3 x \right)} d x}}{2} + \frac{{\color{red}{\int{\left(\frac{\cos{\left(2 x \right)}}{2} + \frac{1}{2}\right)d x}}}}{2} = - \frac{\int{\cos{\left(x \right)} \cos{\left(3 x \right)} d x}}{2} + \frac{{\color{red}{\left(\frac{\int{\left(\cos{\left(2 x \right)} + 1\right)d x}}{2}\right)}}}{2}$$

項別に積分せよ:

$$- \frac{\int{\cos{\left(x \right)} \cos{\left(3 x \right)} d x}}{2} + \frac{{\color{red}{\int{\left(\cos{\left(2 x \right)} + 1\right)d x}}}}{4} = - \frac{\int{\cos{\left(x \right)} \cos{\left(3 x \right)} d x}}{2} + \frac{{\color{red}{\left(\int{1 d x} + \int{\cos{\left(2 x \right)} d x}\right)}}}{4}$$

$$$c=1$$$ に対して定数則 $$$\int c\, dx = c x$$$ を適用する:

$$- \frac{\int{\cos{\left(x \right)} \cos{\left(3 x \right)} d x}}{2} + \frac{\int{\cos{\left(2 x \right)} d x}}{4} + \frac{{\color{red}{\int{1 d x}}}}{4} = - \frac{\int{\cos{\left(x \right)} \cos{\left(3 x \right)} d x}}{2} + \frac{\int{\cos{\left(2 x \right)} d x}}{4} + \frac{{\color{red}{x}}}{4}$$

$$$u=2 x$$$ とする。

すると $$$du=\left(2 x\right)^{\prime }dx = 2 dx$$$(手順は»で確認できます)、$$$dx = \frac{du}{2}$$$ となります。

したがって、

$$\frac{x}{4} - \frac{\int{\cos{\left(x \right)} \cos{\left(3 x \right)} d x}}{2} + \frac{{\color{red}{\int{\cos{\left(2 x \right)} d x}}}}{4} = \frac{x}{4} - \frac{\int{\cos{\left(x \right)} \cos{\left(3 x \right)} d x}}{2} + \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}}}{4}$$

定数倍の法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ を、$$$c=\frac{1}{2}$$$$$$f{\left(u \right)} = \cos{\left(u \right)}$$$ に対して適用する:

$$\frac{x}{4} - \frac{\int{\cos{\left(x \right)} \cos{\left(3 x \right)} d x}}{2} + \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}}}{4} = \frac{x}{4} - \frac{\int{\cos{\left(x \right)} \cos{\left(3 x \right)} d x}}{2} + \frac{{\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{2}\right)}}}{4}$$

余弦の積分は$$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:

$$\frac{x}{4} - \frac{\int{\cos{\left(x \right)} \cos{\left(3 x \right)} d x}}{2} + \frac{{\color{red}{\int{\cos{\left(u \right)} d u}}}}{8} = \frac{x}{4} - \frac{\int{\cos{\left(x \right)} \cos{\left(3 x \right)} d x}}{2} + \frac{{\color{red}{\sin{\left(u \right)}}}}{8}$$

次のことを思い出してください $$$u=2 x$$$:

$$\frac{x}{4} - \frac{\int{\cos{\left(x \right)} \cos{\left(3 x \right)} d x}}{2} + \frac{\sin{\left({\color{red}{u}} \right)}}{8} = \frac{x}{4} - \frac{\int{\cos{\left(x \right)} \cos{\left(3 x \right)} d x}}{2} + \frac{\sin{\left({\color{red}{\left(2 x\right)}} \right)}}{8}$$

公式 $$$\cos\left(\alpha \right)\cos\left(\beta \right)=\frac{1}{2} \cos\left(\alpha-\beta \right)+\frac{1}{2} \cos\left(\alpha+\beta \right)$$$ を用い、$$$\alpha=x$$$$$$\beta=3 x$$$ を使って被積分関数を書き換えなさい。:

$$\frac{x}{4} + \frac{\sin{\left(2 x \right)}}{8} - \frac{{\color{red}{\int{\cos{\left(x \right)} \cos{\left(3 x \right)} d x}}}}{2} = \frac{x}{4} + \frac{\sin{\left(2 x \right)}}{8} - \frac{{\color{red}{\int{\left(\frac{\cos{\left(2 x \right)}}{2} + \frac{\cos{\left(4 x \right)}}{2}\right)d x}}}}{2}$$

定数倍の法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ を、$$$c=\frac{1}{2}$$$$$$f{\left(x \right)} = \cos{\left(2 x \right)} + \cos{\left(4 x \right)}$$$ に対して適用する:

$$\frac{x}{4} + \frac{\sin{\left(2 x \right)}}{8} - \frac{{\color{red}{\int{\left(\frac{\cos{\left(2 x \right)}}{2} + \frac{\cos{\left(4 x \right)}}{2}\right)d x}}}}{2} = \frac{x}{4} + \frac{\sin{\left(2 x \right)}}{8} - \frac{{\color{red}{\left(\frac{\int{\left(\cos{\left(2 x \right)} + \cos{\left(4 x \right)}\right)d x}}{2}\right)}}}{2}$$

項別に積分せよ:

$$\frac{x}{4} + \frac{\sin{\left(2 x \right)}}{8} - \frac{{\color{red}{\int{\left(\cos{\left(2 x \right)} + \cos{\left(4 x \right)}\right)d x}}}}{4} = \frac{x}{4} + \frac{\sin{\left(2 x \right)}}{8} - \frac{{\color{red}{\left(\int{\cos{\left(2 x \right)} d x} + \int{\cos{\left(4 x \right)} d x}\right)}}}{4}$$

積分 $$$\int{\cos{\left(2 x \right)} d x}$$$ はすでに計算されています:

$$\int{\cos{\left(2 x \right)} d x} = \frac{\sin{\left(2 x \right)}}{2}$$

したがって、

$$\frac{x}{4} + \frac{\sin{\left(2 x \right)}}{8} - \frac{\int{\cos{\left(4 x \right)} d x}}{4} - \frac{{\color{red}{\int{\cos{\left(2 x \right)} d x}}}}{4} = \frac{x}{4} + \frac{\sin{\left(2 x \right)}}{8} - \frac{\int{\cos{\left(4 x \right)} d x}}{4} - \frac{{\color{red}{\left(\frac{\sin{\left(2 x \right)}}{2}\right)}}}{4}$$

$$$v=4 x$$$ とする。

すると $$$dv=\left(4 x\right)^{\prime }dx = 4 dx$$$(手順は»で確認できます)、$$$dx = \frac{dv}{4}$$$ となります。

したがって、

$$\frac{x}{4} - \frac{{\color{red}{\int{\cos{\left(4 x \right)} d x}}}}{4} = \frac{x}{4} - \frac{{\color{red}{\int{\frac{\cos{\left(v \right)}}{4} d v}}}}{4}$$

定数倍の法則 $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$ を、$$$c=\frac{1}{4}$$$$$$f{\left(v \right)} = \cos{\left(v \right)}$$$ に対して適用する:

$$\frac{x}{4} - \frac{{\color{red}{\int{\frac{\cos{\left(v \right)}}{4} d v}}}}{4} = \frac{x}{4} - \frac{{\color{red}{\left(\frac{\int{\cos{\left(v \right)} d v}}{4}\right)}}}{4}$$

余弦の積分は$$$\int{\cos{\left(v \right)} d v} = \sin{\left(v \right)}$$$:

$$\frac{x}{4} - \frac{{\color{red}{\int{\cos{\left(v \right)} d v}}}}{16} = \frac{x}{4} - \frac{{\color{red}{\sin{\left(v \right)}}}}{16}$$

次のことを思い出してください $$$v=4 x$$$:

$$\frac{x}{4} - \frac{\sin{\left({\color{red}{v}} \right)}}{16} = \frac{x}{4} - \frac{\sin{\left({\color{red}{\left(4 x\right)}} \right)}}{16}$$

したがって、

$$\int{\sin{\left(x \right)} \sin{\left(2 x \right)} \cos{\left(x \right)} d x} = \frac{x}{4} - \frac{\sin{\left(4 x \right)}}{16}$$

積分定数を加える:

$$\int{\sin{\left(x \right)} \sin{\left(2 x \right)} \cos{\left(x \right)} d x} = \frac{x}{4} - \frac{\sin{\left(4 x \right)}}{16}+C$$

解答

$$$\int \sin{\left(x \right)} \sin{\left(2 x \right)} \cos{\left(x \right)}\, dx = \left(\frac{x}{4} - \frac{\sin{\left(4 x \right)}}{16}\right) + C$$$A


Please try a new game Rotatly