$$$\frac{\sin{\left(x \right)}}{\sin{\left(\frac{\pi t}{4} \right)}}$$$ の $$$x$$$ に関する積分
関連する計算機: 定積分・広義積分計算機
入力内容
$$$\int \frac{\sin{\left(x \right)}}{\sin{\left(\frac{\pi t}{4} \right)}}\, dx$$$ を求めよ。
解答
定数倍の法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ を、$$$c=\frac{1}{\sin{\left(\frac{\pi t}{4} \right)}}$$$ と $$$f{\left(x \right)} = \sin{\left(x \right)}$$$ に対して適用する:
$${\color{red}{\int{\frac{\sin{\left(x \right)}}{\sin{\left(\frac{\pi t}{4} \right)}} d x}}} = {\color{red}{\frac{\int{\sin{\left(x \right)} d x}}{\sin{\left(\frac{\pi t}{4} \right)}}}}$$
正弦関数の不定積分は$$$\int{\sin{\left(x \right)} d x} = - \cos{\left(x \right)}$$$です:
$$\frac{{\color{red}{\int{\sin{\left(x \right)} d x}}}}{\sin{\left(\frac{\pi t}{4} \right)}} = \frac{{\color{red}{\left(- \cos{\left(x \right)}\right)}}}{\sin{\left(\frac{\pi t}{4} \right)}}$$
したがって、
$$\int{\frac{\sin{\left(x \right)}}{\sin{\left(\frac{\pi t}{4} \right)}} d x} = - \frac{\cos{\left(x \right)}}{\sin{\left(\frac{\pi t}{4} \right)}}$$
積分定数を加える:
$$\int{\frac{\sin{\left(x \right)}}{\sin{\left(\frac{\pi t}{4} \right)}} d x} = - \frac{\cos{\left(x \right)}}{\sin{\left(\frac{\pi t}{4} \right)}}+C$$
解答
$$$\int \frac{\sin{\left(x \right)}}{\sin{\left(\frac{\pi t}{4} \right)}}\, dx = - \frac{\cos{\left(x \right)}}{\sin{\left(\frac{\pi t}{4} \right)}} + C$$$A