$$$\frac{\sin{\left(5 x \right)}}{2 \sin{\left(\frac{x_{0}}{5} \right)}}$$$$$$x$$$ に関する積分

この計算機は、$$$x$$$ に関して $$$\frac{\sin{\left(5 x \right)}}{2 \sin{\left(\frac{x_{0}}{5} \right)}}$$$ の積分/原始関数を、手順を示しながら求めます。

関連する計算機: 定積分・広義積分計算機

$$$dx$$$$$$dy$$$ などの微分記号を使わずに書いてください。
自動検出のため、空欄のままにしてください。

計算機が計算を実行できなかった場合、エラーを見つけた場合、またはご提案・フィードバックがある場合は、お問い合わせください

入力内容

$$$\int \frac{\sin{\left(5 x \right)}}{2 \sin{\left(\frac{x_{0}}{5} \right)}}\, dx$$$ を求めよ。

解答

定数倍の法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ を、$$$c=\frac{1}{2 \sin{\left(\frac{x_{0}}{5} \right)}}$$$$$$f{\left(x \right)} = \sin{\left(5 x \right)}$$$ に対して適用する:

$${\color{red}{\int{\frac{\sin{\left(5 x \right)}}{2 \sin{\left(\frac{x_{0}}{5} \right)}} d x}}} = {\color{red}{\left(\frac{\int{\sin{\left(5 x \right)} d x}}{2 \sin{\left(\frac{x_{0}}{5} \right)}}\right)}}$$

$$$u=5 x$$$ とする。

すると $$$du=\left(5 x\right)^{\prime }dx = 5 dx$$$(手順は»で確認できます)、$$$dx = \frac{du}{5}$$$ となります。

この積分は次のように書き換えられる

$$\frac{{\color{red}{\int{\sin{\left(5 x \right)} d x}}}}{2 \sin{\left(\frac{x_{0}}{5} \right)}} = \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{5} d u}}}}{2 \sin{\left(\frac{x_{0}}{5} \right)}}$$

定数倍の法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ を、$$$c=\frac{1}{5}$$$$$$f{\left(u \right)} = \sin{\left(u \right)}$$$ に対して適用する:

$$\frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{5} d u}}}}{2 \sin{\left(\frac{x_{0}}{5} \right)}} = \frac{{\color{red}{\left(\frac{\int{\sin{\left(u \right)} d u}}{5}\right)}}}{2 \sin{\left(\frac{x_{0}}{5} \right)}}$$

正弦関数の不定積分は$$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$です:

$$\frac{{\color{red}{\int{\sin{\left(u \right)} d u}}}}{10 \sin{\left(\frac{x_{0}}{5} \right)}} = \frac{{\color{red}{\left(- \cos{\left(u \right)}\right)}}}{10 \sin{\left(\frac{x_{0}}{5} \right)}}$$

次のことを思い出してください $$$u=5 x$$$:

$$- \frac{\cos{\left({\color{red}{u}} \right)}}{10 \sin{\left(\frac{x_{0}}{5} \right)}} = - \frac{\cos{\left({\color{red}{\left(5 x\right)}} \right)}}{10 \sin{\left(\frac{x_{0}}{5} \right)}}$$

したがって、

$$\int{\frac{\sin{\left(5 x \right)}}{2 \sin{\left(\frac{x_{0}}{5} \right)}} d x} = - \frac{\cos{\left(5 x \right)}}{10 \sin{\left(\frac{x_{0}}{5} \right)}}$$

積分定数を加える:

$$\int{\frac{\sin{\left(5 x \right)}}{2 \sin{\left(\frac{x_{0}}{5} \right)}} d x} = - \frac{\cos{\left(5 x \right)}}{10 \sin{\left(\frac{x_{0}}{5} \right)}}+C$$

解答

$$$\int \frac{\sin{\left(5 x \right)}}{2 \sin{\left(\frac{x_{0}}{5} \right)}}\, dx = - \frac{\cos{\left(5 x \right)}}{10 \sin{\left(\frac{x_{0}}{5} \right)}} + C$$$A


Please try a new game Rotatly