$$$a^{2} b^{2} \sin^{2}{\left(2 x \right)}$$$$$$x$$$ に関する積分

この計算機は、$$$x$$$ に関して $$$a^{2} b^{2} \sin^{2}{\left(2 x \right)}$$$ の積分/原始関数を、手順を示しながら求めます。

関連する計算機: 定積分・広義積分計算機

$$$dx$$$$$$dy$$$ などの微分記号を使わずに書いてください。
自動検出のため、空欄のままにしてください。

計算機が計算を実行できなかった場合、エラーを見つけた場合、またはご提案・フィードバックがある場合は、お問い合わせください

入力内容

$$$\int a^{2} b^{2} \sin^{2}{\left(2 x \right)}\, dx$$$ を求めよ。

解答

冪低減公式 $$$\sin^{2}{\left(\alpha \right)} = \frac{1}{2} - \frac{\cos{\left(2 \alpha \right)}}{2}$$$$$$\alpha=2 x$$$ に適用する:

$${\color{red}{\int{a^{2} b^{2} \sin^{2}{\left(2 x \right)} d x}}} = {\color{red}{\int{\frac{a^{2} b^{2} \left(1 - \cos{\left(4 x \right)}\right)}{2} d x}}}$$

定数倍の法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ を、$$$c=\frac{1}{2}$$$$$$f{\left(x \right)} = a^{2} b^{2} \left(1 - \cos{\left(4 x \right)}\right)$$$ に対して適用する:

$${\color{red}{\int{\frac{a^{2} b^{2} \left(1 - \cos{\left(4 x \right)}\right)}{2} d x}}} = {\color{red}{\left(\frac{\int{a^{2} b^{2} \left(1 - \cos{\left(4 x \right)}\right) d x}}{2}\right)}}$$

Expand the expression:

$$\frac{{\color{red}{\int{a^{2} b^{2} \left(1 - \cos{\left(4 x \right)}\right) d x}}}}{2} = \frac{{\color{red}{\int{\left(- a^{2} b^{2} \cos{\left(4 x \right)} + a^{2} b^{2}\right)d x}}}}{2}$$

項別に積分せよ:

$$\frac{{\color{red}{\int{\left(- a^{2} b^{2} \cos{\left(4 x \right)} + a^{2} b^{2}\right)d x}}}}{2} = \frac{{\color{red}{\left(\int{a^{2} b^{2} d x} - \int{a^{2} b^{2} \cos{\left(4 x \right)} d x}\right)}}}{2}$$

$$$c=a^{2} b^{2}$$$ に対して定数則 $$$\int c\, dx = c x$$$ を適用する:

$$- \frac{\int{a^{2} b^{2} \cos{\left(4 x \right)} d x}}{2} + \frac{{\color{red}{\int{a^{2} b^{2} d x}}}}{2} = - \frac{\int{a^{2} b^{2} \cos{\left(4 x \right)} d x}}{2} + \frac{{\color{red}{a^{2} b^{2} x}}}{2}$$

定数倍の法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ を、$$$c=a^{2} b^{2}$$$$$$f{\left(x \right)} = \cos{\left(4 x \right)}$$$ に対して適用する:

$$\frac{a^{2} b^{2} x}{2} - \frac{{\color{red}{\int{a^{2} b^{2} \cos{\left(4 x \right)} d x}}}}{2} = \frac{a^{2} b^{2} x}{2} - \frac{{\color{red}{a^{2} b^{2} \int{\cos{\left(4 x \right)} d x}}}}{2}$$

$$$u=4 x$$$ とする。

すると $$$du=\left(4 x\right)^{\prime }dx = 4 dx$$$(手順は»で確認できます)、$$$dx = \frac{du}{4}$$$ となります。

積分は次のようになります

$$\frac{a^{2} b^{2} x}{2} - \frac{a^{2} b^{2} {\color{red}{\int{\cos{\left(4 x \right)} d x}}}}{2} = \frac{a^{2} b^{2} x}{2} - \frac{a^{2} b^{2} {\color{red}{\int{\frac{\cos{\left(u \right)}}{4} d u}}}}{2}$$

定数倍の法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ を、$$$c=\frac{1}{4}$$$$$$f{\left(u \right)} = \cos{\left(u \right)}$$$ に対して適用する:

$$\frac{a^{2} b^{2} x}{2} - \frac{a^{2} b^{2} {\color{red}{\int{\frac{\cos{\left(u \right)}}{4} d u}}}}{2} = \frac{a^{2} b^{2} x}{2} - \frac{a^{2} b^{2} {\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{4}\right)}}}{2}$$

余弦の積分は$$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:

$$\frac{a^{2} b^{2} x}{2} - \frac{a^{2} b^{2} {\color{red}{\int{\cos{\left(u \right)} d u}}}}{8} = \frac{a^{2} b^{2} x}{2} - \frac{a^{2} b^{2} {\color{red}{\sin{\left(u \right)}}}}{8}$$

次のことを思い出してください $$$u=4 x$$$:

$$\frac{a^{2} b^{2} x}{2} - \frac{a^{2} b^{2} \sin{\left({\color{red}{u}} \right)}}{8} = \frac{a^{2} b^{2} x}{2} - \frac{a^{2} b^{2} \sin{\left({\color{red}{\left(4 x\right)}} \right)}}{8}$$

したがって、

$$\int{a^{2} b^{2} \sin^{2}{\left(2 x \right)} d x} = \frac{a^{2} b^{2} x}{2} - \frac{a^{2} b^{2} \sin{\left(4 x \right)}}{8}$$

簡単化せよ:

$$\int{a^{2} b^{2} \sin^{2}{\left(2 x \right)} d x} = \frac{a^{2} b^{2} \left(4 x - \sin{\left(4 x \right)}\right)}{8}$$

積分定数を加える:

$$\int{a^{2} b^{2} \sin^{2}{\left(2 x \right)} d x} = \frac{a^{2} b^{2} \left(4 x - \sin{\left(4 x \right)}\right)}{8}+C$$

解答

$$$\int a^{2} b^{2} \sin^{2}{\left(2 x \right)}\, dx = \frac{a^{2} b^{2} \left(4 x - \sin{\left(4 x \right)}\right)}{8} + C$$$A


Please try a new game Rotatly