$$$\sin{\left(2 \theta \right)} \cos{\left(\theta \right)}$$$の積分

この計算機は、手順を示しながら$$$\sin{\left(2 \theta \right)} \cos{\left(\theta \right)}$$$の不定積分(原始関数)を求めます。

関連する計算機: 定積分・広義積分計算機

$$$dx$$$$$$dy$$$ などの微分記号を使わずに書いてください。
自動検出のため、空欄のままにしてください。

計算機が計算を実行できなかった場合、エラーを見つけた場合、またはご提案・フィードバックがある場合は、お問い合わせください

入力内容

$$$\int \sin{\left(2 \theta \right)} \cos{\left(\theta \right)}\, d\theta$$$ を求めよ。

解答

公式 $$$\sin\left(\alpha \right)\cos\left(\beta \right)=\frac{1}{2} \sin\left(\alpha-\beta \right)+\frac{1}{2} \sin\left(\alpha+\beta \right)$$$ を用い、$$$\alpha=2 \theta$$$$$$\beta=\theta$$$ を使って被積分関数を書き換えなさい。:

$${\color{red}{\int{\sin{\left(2 \theta \right)} \cos{\left(\theta \right)} d \theta}}} = {\color{red}{\int{\left(\frac{\sin{\left(\theta \right)}}{2} + \frac{\sin{\left(3 \theta \right)}}{2}\right)d \theta}}}$$

定数倍の法則 $$$\int c f{\left(\theta \right)}\, d\theta = c \int f{\left(\theta \right)}\, d\theta$$$ を、$$$c=\frac{1}{2}$$$$$$f{\left(\theta \right)} = \sin{\left(\theta \right)} + \sin{\left(3 \theta \right)}$$$ に対して適用する:

$${\color{red}{\int{\left(\frac{\sin{\left(\theta \right)}}{2} + \frac{\sin{\left(3 \theta \right)}}{2}\right)d \theta}}} = {\color{red}{\left(\frac{\int{\left(\sin{\left(\theta \right)} + \sin{\left(3 \theta \right)}\right)d \theta}}{2}\right)}}$$

項別に積分せよ:

$$\frac{{\color{red}{\int{\left(\sin{\left(\theta \right)} + \sin{\left(3 \theta \right)}\right)d \theta}}}}{2} = \frac{{\color{red}{\left(\int{\sin{\left(\theta \right)} d \theta} + \int{\sin{\left(3 \theta \right)} d \theta}\right)}}}{2}$$

正弦関数の不定積分は$$$\int{\sin{\left(\theta \right)} d \theta} = - \cos{\left(\theta \right)}$$$です:

$$\frac{\int{\sin{\left(3 \theta \right)} d \theta}}{2} + \frac{{\color{red}{\int{\sin{\left(\theta \right)} d \theta}}}}{2} = \frac{\int{\sin{\left(3 \theta \right)} d \theta}}{2} + \frac{{\color{red}{\left(- \cos{\left(\theta \right)}\right)}}}{2}$$

$$$u=3 \theta$$$ とする。

すると $$$du=\left(3 \theta\right)^{\prime }d\theta = 3 d\theta$$$(手順は»で確認できます)、$$$d\theta = \frac{du}{3}$$$ となります。

積分は次のようになります

$$- \frac{\cos{\left(\theta \right)}}{2} + \frac{{\color{red}{\int{\sin{\left(3 \theta \right)} d \theta}}}}{2} = - \frac{\cos{\left(\theta \right)}}{2} + \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{3} d u}}}}{2}$$

定数倍の法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ を、$$$c=\frac{1}{3}$$$$$$f{\left(u \right)} = \sin{\left(u \right)}$$$ に対して適用する:

$$- \frac{\cos{\left(\theta \right)}}{2} + \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{3} d u}}}}{2} = - \frac{\cos{\left(\theta \right)}}{2} + \frac{{\color{red}{\left(\frac{\int{\sin{\left(u \right)} d u}}{3}\right)}}}{2}$$

正弦関数の不定積分は$$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$です:

$$- \frac{\cos{\left(\theta \right)}}{2} + \frac{{\color{red}{\int{\sin{\left(u \right)} d u}}}}{6} = - \frac{\cos{\left(\theta \right)}}{2} + \frac{{\color{red}{\left(- \cos{\left(u \right)}\right)}}}{6}$$

次のことを思い出してください $$$u=3 \theta$$$:

$$- \frac{\cos{\left(\theta \right)}}{2} - \frac{\cos{\left({\color{red}{u}} \right)}}{6} = - \frac{\cos{\left(\theta \right)}}{2} - \frac{\cos{\left({\color{red}{\left(3 \theta\right)}} \right)}}{6}$$

したがって、

$$\int{\sin{\left(2 \theta \right)} \cos{\left(\theta \right)} d \theta} = - \frac{\cos{\left(\theta \right)}}{2} - \frac{\cos{\left(3 \theta \right)}}{6}$$

積分定数を加える:

$$\int{\sin{\left(2 \theta \right)} \cos{\left(\theta \right)} d \theta} = - \frac{\cos{\left(\theta \right)}}{2} - \frac{\cos{\left(3 \theta \right)}}{6}+C$$

解答

$$$\int \sin{\left(2 \theta \right)} \cos{\left(\theta \right)}\, d\theta = \left(- \frac{\cos{\left(\theta \right)}}{2} - \frac{\cos{\left(3 \theta \right)}}{6}\right) + C$$$A


Please try a new game Rotatly