$$$\frac{\sin^{2}{\left(z \right)}}{- \frac{\pi}{6} + z}$$$$$$\pi$$$ に関する積分

この計算機は、$$$\pi$$$ に関して $$$\frac{\sin^{2}{\left(z \right)}}{- \frac{\pi}{6} + z}$$$ の積分/原始関数を、手順を示しながら求めます。

関連する計算機: 定積分・広義積分計算機

$$$dx$$$$$$dy$$$ などの微分記号を使わずに書いてください。
自動検出のため、空欄のままにしてください。

計算機が計算を実行できなかった場合、エラーを見つけた場合、またはご提案・フィードバックがある場合は、お問い合わせください

入力内容

$$$\int \frac{\sin^{2}{\left(z \right)}}{- \frac{\pi}{6} + z}\, d\pi$$$ を求めよ。

解答

定数倍の法則 $$$\int c f{\left(\pi \right)}\, d\pi = c \int f{\left(\pi \right)}\, d\pi$$$ を、$$$c=\sin^{2}{\left(z \right)}$$$$$$f{\left(\pi \right)} = \frac{1}{- \frac{\pi}{6} + z}$$$ に対して適用する:

$${\color{red}{\int{\frac{\sin^{2}{\left(z \right)}}{- \frac{\pi}{6} + z} d \pi}}} = {\color{red}{\sin^{2}{\left(z \right)} \int{\frac{1}{- \frac{\pi}{6} + z} d \pi}}}$$

$$$u=- \frac{\pi}{6} + z$$$ とする。

すると $$$du=\left(- \frac{\pi}{6} + z\right)^{\prime }d\pi = - \frac{d\pi}{6}$$$(手順は»で確認できます)、$$$d\pi = - 6 du$$$ となります。

この積分は次のように書き換えられる

$$\sin^{2}{\left(z \right)} {\color{red}{\int{\frac{1}{- \frac{\pi}{6} + z} d \pi}}} = \sin^{2}{\left(z \right)} {\color{red}{\int{\left(- \frac{6}{u}\right)d u}}}$$

定数倍の法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ を、$$$c=-6$$$$$$f{\left(u \right)} = \frac{1}{u}$$$ に対して適用する:

$$\sin^{2}{\left(z \right)} {\color{red}{\int{\left(- \frac{6}{u}\right)d u}}} = \sin^{2}{\left(z \right)} {\color{red}{\left(- 6 \int{\frac{1}{u} d u}\right)}}$$

$$$\frac{1}{u}$$$ の不定積分は $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$ です:

$$- 6 \sin^{2}{\left(z \right)} {\color{red}{\int{\frac{1}{u} d u}}} = - 6 \sin^{2}{\left(z \right)} {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$

次のことを思い出してください $$$u=- \frac{\pi}{6} + z$$$:

$$- 6 \ln{\left(\left|{{\color{red}{u}}}\right| \right)} \sin^{2}{\left(z \right)} = - 6 \ln{\left(\left|{{\color{red}{\left(- \frac{\pi}{6} + z\right)}}}\right| \right)} \sin^{2}{\left(z \right)}$$

したがって、

$$\int{\frac{\sin^{2}{\left(z \right)}}{- \frac{\pi}{6} + z} d \pi} = - 6 \ln{\left(\left|{\frac{\pi}{6} - z}\right| \right)} \sin^{2}{\left(z \right)}$$

簡単化せよ:

$$\int{\frac{\sin^{2}{\left(z \right)}}{- \frac{\pi}{6} + z} d \pi} = 6 \left(- \ln{\left(\left|{\pi - 6 z}\right| \right)} + \ln{\left(6 \right)}\right) \sin^{2}{\left(z \right)}$$

積分定数を加える:

$$\int{\frac{\sin^{2}{\left(z \right)}}{- \frac{\pi}{6} + z} d \pi} = 6 \left(- \ln{\left(\left|{\pi - 6 z}\right| \right)} + \ln{\left(6 \right)}\right) \sin^{2}{\left(z \right)}+C$$

解答

$$$\int \frac{\sin^{2}{\left(z \right)}}{- \frac{\pi}{6} + z}\, d\pi = 6 \left(- \ln\left(\left|{\pi - 6 z}\right|\right) + \ln\left(6\right)\right) \sin^{2}{\left(z \right)} + C$$$A


Please try a new game Rotatly