$$$\sin{\left(5 x \right)} \cos^{2}{\left(5 x \right)}$$$の積分

この計算機は、手順を示しながら$$$\sin{\left(5 x \right)} \cos^{2}{\left(5 x \right)}$$$の不定積分(原始関数)を求めます。

関連する計算機: 定積分・広義積分計算機

$$$dx$$$$$$dy$$$ などの微分記号を使わずに書いてください。
自動検出のため、空欄のままにしてください。

計算機が計算を実行できなかった場合、エラーを見つけた場合、またはご提案・フィードバックがある場合は、お問い合わせください

入力内容

$$$\int \sin{\left(5 x \right)} \cos^{2}{\left(5 x \right)}\, dx$$$ を求めよ。

解答

$$$u=\cos{\left(5 x \right)}$$$ とする。

すると $$$du=\left(\cos{\left(5 x \right)}\right)^{\prime }dx = - 5 \sin{\left(5 x \right)} dx$$$(手順は»で確認できます)、$$$\sin{\left(5 x \right)} dx = - \frac{du}{5}$$$ となります。

したがって、

$${\color{red}{\int{\sin{\left(5 x \right)} \cos^{2}{\left(5 x \right)} d x}}} = {\color{red}{\int{\left(- \frac{u^{2}}{5}\right)d u}}}$$

定数倍の法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ を、$$$c=- \frac{1}{5}$$$$$$f{\left(u \right)} = u^{2}$$$ に対して適用する:

$${\color{red}{\int{\left(- \frac{u^{2}}{5}\right)d u}}} = {\color{red}{\left(- \frac{\int{u^{2} d u}}{5}\right)}}$$

$$$n=2$$$ を用いて、べき乗の法則 $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ を適用します:

$$- \frac{{\color{red}{\int{u^{2} d u}}}}{5}=- \frac{{\color{red}{\frac{u^{1 + 2}}{1 + 2}}}}{5}=- \frac{{\color{red}{\left(\frac{u^{3}}{3}\right)}}}{5}$$

次のことを思い出してください $$$u=\cos{\left(5 x \right)}$$$:

$$- \frac{{\color{red}{u}}^{3}}{15} = - \frac{{\color{red}{\cos{\left(5 x \right)}}}^{3}}{15}$$

したがって、

$$\int{\sin{\left(5 x \right)} \cos^{2}{\left(5 x \right)} d x} = - \frac{\cos^{3}{\left(5 x \right)}}{15}$$

積分定数を加える:

$$\int{\sin{\left(5 x \right)} \cos^{2}{\left(5 x \right)} d x} = - \frac{\cos^{3}{\left(5 x \right)}}{15}+C$$

解答

$$$\int \sin{\left(5 x \right)} \cos^{2}{\left(5 x \right)}\, dx = - \frac{\cos^{3}{\left(5 x \right)}}{15} + C$$$A


Please try a new game Rotatly