$$$\sec^{2}{\left(\frac{x}{2} \right)}$$$の積分
入力内容
$$$\int \sec^{2}{\left(\frac{x}{2} \right)}\, dx$$$ を求めよ。
解答
$$$u=\frac{x}{2}$$$ とする。
すると $$$du=\left(\frac{x}{2}\right)^{\prime }dx = \frac{dx}{2}$$$(手順は»で確認できます)、$$$dx = 2 du$$$ となります。
したがって、
$${\color{red}{\int{\sec^{2}{\left(\frac{x}{2} \right)} d x}}} = {\color{red}{\int{2 \sec^{2}{\left(u \right)} d u}}}$$
定数倍の法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ を、$$$c=2$$$ と $$$f{\left(u \right)} = \sec^{2}{\left(u \right)}$$$ に対して適用する:
$${\color{red}{\int{2 \sec^{2}{\left(u \right)} d u}}} = {\color{red}{\left(2 \int{\sec^{2}{\left(u \right)} d u}\right)}}$$
$$$\sec^{2}{\left(u \right)}$$$ の不定積分は $$$\int{\sec^{2}{\left(u \right)} d u} = \tan{\left(u \right)}$$$ です:
$$2 {\color{red}{\int{\sec^{2}{\left(u \right)} d u}}} = 2 {\color{red}{\tan{\left(u \right)}}}$$
次のことを思い出してください $$$u=\frac{x}{2}$$$:
$$2 \tan{\left({\color{red}{u}} \right)} = 2 \tan{\left({\color{red}{\left(\frac{x}{2}\right)}} \right)}$$
したがって、
$$\int{\sec^{2}{\left(\frac{x}{2} \right)} d x} = 2 \tan{\left(\frac{x}{2} \right)}$$
積分定数を加える:
$$\int{\sec^{2}{\left(\frac{x}{2} \right)} d x} = 2 \tan{\left(\frac{x}{2} \right)}+C$$
解答
$$$\int \sec^{2}{\left(\frac{x}{2} \right)}\, dx = 2 \tan{\left(\frac{x}{2} \right)} + C$$$A