$$$r^{n}$$$ の $$$n$$$ に関する積分
入力内容
$$$\int r^{n}\, dn$$$ を求めよ。
解答
Apply the exponential rule $$$\int{a^{n} d n} = \frac{a^{n}}{\ln{\left(a \right)}}$$$ with $$$a=r$$$:
$${\color{red}{\int{r^{n} d n}}} = {\color{red}{\frac{r^{n}}{\ln{\left(r \right)}}}}$$
したがって、
$$\int{r^{n} d n} = \frac{r^{n}}{\ln{\left(r \right)}}$$
積分定数を加える:
$$\int{r^{n} d n} = \frac{r^{n}}{\ln{\left(r \right)}}+C$$
解答
$$$\int r^{n}\, dn = \frac{r^{n}}{\ln\left(r\right)} + C$$$A
Please try a new game Rotatly