$$$\pi^{x}$$$の積分
入力内容
$$$\int \pi^{x}\, dx$$$ を求めよ。
解答
Apply the exponential rule $$$\int{a^{x} d x} = \frac{a^{x}}{\ln{\left(a \right)}}$$$ with $$$a=\pi$$$:
$${\color{red}{\int{\pi^{x} d x}}} = {\color{red}{\frac{\pi^{x}}{\ln{\left(\pi \right)}}}}$$
したがって、
$$\int{\pi^{x} d x} = \frac{\pi^{x}}{\ln{\left(\pi \right)}}$$
積分定数を加える:
$$\int{\pi^{x} d x} = \frac{\pi^{x}}{\ln{\left(\pi \right)}}+C$$
解答
$$$\int \pi^{x}\, dx = \frac{\pi^{x}}{\ln\left(\pi\right)} + C$$$A
Please try a new game Rotatly