$$$\frac{\pi}{2}$$$の積分
入力内容
$$$\int \frac{\pi}{2}\, d\pi$$$ を求めよ。
解答
定数倍の法則 $$$\int c f{\left(\pi \right)}\, d\pi = c \int f{\left(\pi \right)}\, d\pi$$$ を、$$$c=\frac{1}{2}$$$ と $$$f{\left(\pi \right)} = \pi$$$ に対して適用する:
$${\color{red}{\int{\frac{\pi}{2} d \pi}}} = {\color{red}{\left(\frac{\int{\pi d \pi}}{2}\right)}}$$
$$$n=1$$$ を用いて、べき乗の法則 $$$\int \pi^{n}\, d\pi = \frac{\pi^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ を適用します:
$$\frac{{\color{red}{\int{\pi d \pi}}}}{2}=\frac{{\color{red}{\frac{\pi^{1 + 1}}{1 + 1}}}}{2}=\frac{{\color{red}{\left(\frac{\pi^{2}}{2}\right)}}}{2}$$
したがって、
$$\int{\frac{\pi}{2} d \pi} = \frac{\pi^{2}}{4}$$
積分定数を加える:
$$\int{\frac{\pi}{2} d \pi} = \frac{\pi^{2}}{4}+C$$
解答
$$$\int \frac{\pi}{2}\, d\pi = \frac{\pi^{2}}{4} + C$$$A
Please try a new game Rotatly