$$$x^{- a} \ln\left(n\right)$$$$$$x$$$ に関する積分

この計算機は、$$$x$$$ に関して $$$x^{- a} \ln\left(n\right)$$$ の積分/原始関数を、手順を示しながら求めます。

関連する計算機: 定積分・広義積分計算機

$$$dx$$$$$$dy$$$ などの微分記号を使わずに書いてください。
自動検出のため、空欄のままにしてください。

計算機が計算を実行できなかった場合、エラーを見つけた場合、またはご提案・フィードバックがある場合は、お問い合わせください

入力内容

$$$\int x^{- a} \ln\left(n\right)\, dx$$$ を求めよ。

解答

定数倍の法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ を、$$$c=\ln{\left(n \right)}$$$$$$f{\left(x \right)} = x^{- a}$$$ に対して適用する:

$${\color{red}{\int{x^{- a} \ln{\left(n \right)} d x}}} = {\color{red}{\ln{\left(n \right)} \int{x^{- a} d x}}}$$

$$$n=- a$$$ を用いて、べき乗の法則 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ を適用します:

$$\ln{\left(n \right)} {\color{red}{\int{x^{- a} d x}}}=\ln{\left(n \right)} {\color{red}{\frac{x^{1 - a}}{1 - a}}}=\ln{\left(n \right)} {\color{red}{\frac{x^{1 - a}}{1 - a}}}$$

したがって、

$$\int{x^{- a} \ln{\left(n \right)} d x} = \frac{x^{1 - a} \ln{\left(n \right)}}{1 - a}$$

簡単化せよ:

$$\int{x^{- a} \ln{\left(n \right)} d x} = - \frac{x^{1 - a} \ln{\left(n \right)}}{a - 1}$$

積分定数を加える:

$$\int{x^{- a} \ln{\left(n \right)} d x} = - \frac{x^{1 - a} \ln{\left(n \right)}}{a - 1}+C$$

解答

$$$\int x^{- a} \ln\left(n\right)\, dx = - \frac{x^{1 - a} \ln\left(n\right)}{a - 1} + C$$$A


Please try a new game Rotatly