$$$\frac{\ln\left(x^{3}\right)}{\ln\left(2\right)}$$$の積分
関連する計算機: 定積分・広義積分計算機
入力内容
$$$\int \frac{3 \ln\left(x\right)}{\ln\left(2\right)}\, dx$$$ を求めよ。
解答
入力は次のように書き換えられます: $$$\int{\frac{\ln{\left(x^{3} \right)}}{\ln{\left(2 \right)}} d x}=\int{\frac{3 \ln{\left(x \right)}}{\ln{\left(2 \right)}} d x}$$$。
定数倍の法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ を、$$$c=\frac{3}{\ln{\left(2 \right)}}$$$ と $$$f{\left(x \right)} = \ln{\left(x \right)}$$$ に対して適用する:
$${\color{red}{\int{\frac{3 \ln{\left(x \right)}}{\ln{\left(2 \right)}} d x}}} = {\color{red}{\left(\frac{3 \int{\ln{\left(x \right)} d x}}{\ln{\left(2 \right)}}\right)}}$$
積分 $$$\int{\ln{\left(x \right)} d x}$$$ には、部分積分法$$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$を用いてください。
$$$\operatorname{u}=\ln{\left(x \right)}$$$ と $$$\operatorname{dv}=dx$$$ とする。
したがって、$$$\operatorname{du}=\left(\ln{\left(x \right)}\right)^{\prime }dx=\frac{dx}{x}$$$(手順は»を参照)および$$$\operatorname{v}=\int{1 d x}=x$$$(手順は»を参照)。
積分は次のようになります
$$\frac{3 {\color{red}{\int{\ln{\left(x \right)} d x}}}}{\ln{\left(2 \right)}}=\frac{3 {\color{red}{\left(\ln{\left(x \right)} \cdot x-\int{x \cdot \frac{1}{x} d x}\right)}}}{\ln{\left(2 \right)}}=\frac{3 {\color{red}{\left(x \ln{\left(x \right)} - \int{1 d x}\right)}}}{\ln{\left(2 \right)}}$$
$$$c=1$$$ に対して定数則 $$$\int c\, dx = c x$$$ を適用する:
$$\frac{3 \left(x \ln{\left(x \right)} - {\color{red}{\int{1 d x}}}\right)}{\ln{\left(2 \right)}} = \frac{3 \left(x \ln{\left(x \right)} - {\color{red}{x}}\right)}{\ln{\left(2 \right)}}$$
したがって、
$$\int{\frac{3 \ln{\left(x \right)}}{\ln{\left(2 \right)}} d x} = \frac{3 \left(x \ln{\left(x \right)} - x\right)}{\ln{\left(2 \right)}}$$
簡単化せよ:
$$\int{\frac{3 \ln{\left(x \right)}}{\ln{\left(2 \right)}} d x} = \frac{3 x \left(\ln{\left(x \right)} - 1\right)}{\ln{\left(2 \right)}}$$
積分定数を加える:
$$\int{\frac{3 \ln{\left(x \right)}}{\ln{\left(2 \right)}} d x} = \frac{3 x \left(\ln{\left(x \right)} - 1\right)}{\ln{\left(2 \right)}}+C$$
解答
$$$\int \frac{3 \ln\left(x\right)}{\ln\left(2\right)}\, dx = \frac{3 x \left(\ln\left(x\right) - 1\right)}{\ln\left(2\right)} + C$$$A