$$$e^{x} \ln\left(x\right)$$$の積分

この計算機は、手順を示しながら$$$e^{x} \ln\left(x\right)$$$の不定積分(原始関数)を求めます。

関連する計算機: 定積分・広義積分計算機

$$$dx$$$$$$dy$$$ などの微分記号を使わずに書いてください。
自動検出のため、空欄のままにしてください。

計算機が計算を実行できなかった場合、エラーを見つけた場合、またはご提案・フィードバックがある場合は、お問い合わせください

入力内容

$$$\int e^{x} \ln\left(x\right)\, dx$$$ を求めよ。

解答

積分 $$$\int{e^{x} \ln{\left(x \right)} d x}$$$ には、部分積分法$$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$を用いてください。

$$$\operatorname{u}=\ln{\left(x \right)}$$$$$$\operatorname{dv}=e^{x} dx$$$ とする。

したがって、$$$\operatorname{du}=\left(\ln{\left(x \right)}\right)^{\prime }dx=\frac{dx}{x}$$$(手順は»を参照)および$$$\operatorname{v}=\int{e^{x} d x}=e^{x}$$$(手順は»を参照)。

この積分は次のように書き換えられる

$${\color{red}{\int{e^{x} \ln{\left(x \right)} d x}}}={\color{red}{\left(\ln{\left(x \right)} \cdot e^{x}-\int{e^{x} \cdot \frac{1}{x} d x}\right)}}={\color{red}{\left(e^{x} \ln{\left(x \right)} - \int{\frac{e^{x}}{x} d x}\right)}}$$

この積分(指数積分)には閉形式はありません:

$$e^{x} \ln{\left(x \right)} - {\color{red}{\int{\frac{e^{x}}{x} d x}}} = e^{x} \ln{\left(x \right)} - {\color{red}{\operatorname{Ei}{\left(x \right)}}}$$

したがって、

$$\int{e^{x} \ln{\left(x \right)} d x} = e^{x} \ln{\left(x \right)} - \operatorname{Ei}{\left(x \right)}$$

積分定数を加える:

$$\int{e^{x} \ln{\left(x \right)} d x} = e^{x} \ln{\left(x \right)} - \operatorname{Ei}{\left(x \right)}+C$$

解答

$$$\int e^{x} \ln\left(x\right)\, dx = \left(e^{x} \ln\left(x\right) - \operatorname{Ei}{\left(x \right)}\right) + C$$$A


Please try a new game Rotatly