$$$e^{5 x} \sin{\left(3 x \right)}$$$の積分

この計算機は、手順を示しながら$$$e^{5 x} \sin{\left(3 x \right)}$$$の不定積分(原始関数)を求めます。

関連する計算機: 定積分・広義積分計算機

$$$dx$$$$$$dy$$$ などの微分記号を使わずに書いてください。
自動検出のため、空欄のままにしてください。

計算機が計算を実行できなかった場合、エラーを見つけた場合、またはご提案・フィードバックがある場合は、お問い合わせください

入力内容

$$$\int e^{5 x} \sin{\left(3 x \right)}\, dx$$$ を求めよ。

解答

積分 $$$\int{e^{5 x} \sin{\left(3 x \right)} d x}$$$ には、部分積分法$$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$を用いてください。

$$$\operatorname{u}=\sin{\left(3 x \right)}$$$$$$\operatorname{dv}=e^{5 x} dx$$$ とする。

したがって、$$$\operatorname{du}=\left(\sin{\left(3 x \right)}\right)^{\prime }dx=3 \cos{\left(3 x \right)} dx$$$(手順は»を参照)および$$$\operatorname{v}=\int{e^{5 x} d x}=\frac{e^{5 x}}{5}$$$(手順は»を参照)。

したがって、

$${\color{red}{\int{e^{5 x} \sin{\left(3 x \right)} d x}}}={\color{red}{\left(\sin{\left(3 x \right)} \cdot \frac{e^{5 x}}{5}-\int{\frac{e^{5 x}}{5} \cdot 3 \cos{\left(3 x \right)} d x}\right)}}={\color{red}{\left(\frac{e^{5 x} \sin{\left(3 x \right)}}{5} - \int{\frac{3 e^{5 x} \cos{\left(3 x \right)}}{5} d x}\right)}}$$

定数倍の法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ を、$$$c=\frac{3}{5}$$$$$$f{\left(x \right)} = e^{5 x} \cos{\left(3 x \right)}$$$ に対して適用する:

$$\frac{e^{5 x} \sin{\left(3 x \right)}}{5} - {\color{red}{\int{\frac{3 e^{5 x} \cos{\left(3 x \right)}}{5} d x}}} = \frac{e^{5 x} \sin{\left(3 x \right)}}{5} - {\color{red}{\left(\frac{3 \int{e^{5 x} \cos{\left(3 x \right)} d x}}{5}\right)}}$$

積分 $$$\int{e^{5 x} \cos{\left(3 x \right)} d x}$$$ には、部分積分法$$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$を用いてください。

$$$\operatorname{u}=\cos{\left(3 x \right)}$$$$$$\operatorname{dv}=e^{5 x} dx$$$ とする。

したがって、$$$\operatorname{du}=\left(\cos{\left(3 x \right)}\right)^{\prime }dx=- 3 \sin{\left(3 x \right)} dx$$$(手順は»を参照)および$$$\operatorname{v}=\int{e^{5 x} d x}=\frac{e^{5 x}}{5}$$$(手順は»を参照)。

したがって、

$$\frac{e^{5 x} \sin{\left(3 x \right)}}{5} - \frac{3 {\color{red}{\int{e^{5 x} \cos{\left(3 x \right)} d x}}}}{5}=\frac{e^{5 x} \sin{\left(3 x \right)}}{5} - \frac{3 {\color{red}{\left(\cos{\left(3 x \right)} \cdot \frac{e^{5 x}}{5}-\int{\frac{e^{5 x}}{5} \cdot \left(- 3 \sin{\left(3 x \right)}\right) d x}\right)}}}{5}=\frac{e^{5 x} \sin{\left(3 x \right)}}{5} - \frac{3 {\color{red}{\left(\frac{e^{5 x} \cos{\left(3 x \right)}}{5} - \int{\left(- \frac{3 e^{5 x} \sin{\left(3 x \right)}}{5}\right)d x}\right)}}}{5}$$

定数倍の法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ を、$$$c=- \frac{3}{5}$$$$$$f{\left(x \right)} = e^{5 x} \sin{\left(3 x \right)}$$$ に対して適用する:

$$\frac{e^{5 x} \sin{\left(3 x \right)}}{5} - \frac{3 e^{5 x} \cos{\left(3 x \right)}}{25} + \frac{3 {\color{red}{\int{\left(- \frac{3 e^{5 x} \sin{\left(3 x \right)}}{5}\right)d x}}}}{5} = \frac{e^{5 x} \sin{\left(3 x \right)}}{5} - \frac{3 e^{5 x} \cos{\left(3 x \right)}}{25} + \frac{3 {\color{red}{\left(- \frac{3 \int{e^{5 x} \sin{\left(3 x \right)} d x}}{5}\right)}}}{5}$$

すでに見た積分に帰着しました。

したがって、積分に関する次の簡単な等式を得ました:

$$\int{e^{5 x} \sin{\left(3 x \right)} d x} = \frac{e^{5 x} \sin{\left(3 x \right)}}{5} - \frac{3 e^{5 x} \cos{\left(3 x \right)}}{25} - \frac{9 \int{e^{5 x} \sin{\left(3 x \right)} d x}}{25}$$

これを解くと、次のようになります。

$$\int{e^{5 x} \sin{\left(3 x \right)} d x} = \frac{\left(5 \sin{\left(3 x \right)} - 3 \cos{\left(3 x \right)}\right) e^{5 x}}{34}$$

したがって、

$$\int{e^{5 x} \sin{\left(3 x \right)} d x} = \frac{\left(5 \sin{\left(3 x \right)} - 3 \cos{\left(3 x \right)}\right) e^{5 x}}{34}$$

積分定数を加える:

$$\int{e^{5 x} \sin{\left(3 x \right)} d x} = \frac{\left(5 \sin{\left(3 x \right)} - 3 \cos{\left(3 x \right)}\right) e^{5 x}}{34}+C$$

解答

$$$\int e^{5 x} \sin{\left(3 x \right)}\, dx = \frac{\left(5 \sin{\left(3 x \right)} - 3 \cos{\left(3 x \right)}\right) e^{5 x}}{34} + C$$$A


Please try a new game Rotatly