$$$e^{\sqrt{33} \sqrt{x}}$$$の積分
入力内容
$$$\int e^{\sqrt{33} \sqrt{x}}\, dx$$$ を求めよ。
解答
$$$u=\sqrt{33} \sqrt{x}$$$ とする。
すると $$$du=\left(\sqrt{33} \sqrt{x}\right)^{\prime }dx = \frac{\sqrt{33}}{2 \sqrt{x}} dx$$$(手順は»で確認できます)、$$$\frac{dx}{\sqrt{x}} = \frac{2 \sqrt{33} du}{33}$$$ となります。
したがって、
$${\color{red}{\int{e^{\sqrt{33} \sqrt{x}} d x}}} = {\color{red}{\int{\frac{2 u e^{u}}{33} d u}}}$$
定数倍の法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ を、$$$c=\frac{2}{33}$$$ と $$$f{\left(u \right)} = u e^{u}$$$ に対して適用する:
$${\color{red}{\int{\frac{2 u e^{u}}{33} d u}}} = {\color{red}{\left(\frac{2 \int{u e^{u} d u}}{33}\right)}}$$
積分 $$$\int{u e^{u} d u}$$$ には、部分積分法$$$\int \operatorname{g} \operatorname{dv} = \operatorname{g}\operatorname{v} - \int \operatorname{v} \operatorname{dg}$$$を用いてください。
$$$\operatorname{g}=u$$$ と $$$\operatorname{dv}=e^{u} du$$$ とする。
したがって、$$$\operatorname{dg}=\left(u\right)^{\prime }du=1 du$$$(手順は»を参照)および$$$\operatorname{v}=\int{e^{u} d u}=e^{u}$$$(手順は»を参照)。
したがって、
$$\frac{2 {\color{red}{\int{u e^{u} d u}}}}{33}=\frac{2 {\color{red}{\left(u \cdot e^{u}-\int{e^{u} \cdot 1 d u}\right)}}}{33}=\frac{2 {\color{red}{\left(u e^{u} - \int{e^{u} d u}\right)}}}{33}$$
指数関数の積分は $$$\int{e^{u} d u} = e^{u}$$$です:
$$\frac{2 u e^{u}}{33} - \frac{2 {\color{red}{\int{e^{u} d u}}}}{33} = \frac{2 u e^{u}}{33} - \frac{2 {\color{red}{e^{u}}}}{33}$$
次のことを思い出してください $$$u=\sqrt{33} \sqrt{x}$$$:
$$- \frac{2 e^{{\color{red}{u}}}}{33} + \frac{2 {\color{red}{u}} e^{{\color{red}{u}}}}{33} = - \frac{2 e^{{\color{red}{\sqrt{33} \sqrt{x}}}}}{33} + \frac{2 {\color{red}{\sqrt{33} \sqrt{x}}} e^{{\color{red}{\sqrt{33} \sqrt{x}}}}}{33}$$
したがって、
$$\int{e^{\sqrt{33} \sqrt{x}} d x} = \frac{2 \sqrt{33} \sqrt{x} e^{\sqrt{33} \sqrt{x}}}{33} - \frac{2 e^{\sqrt{33} \sqrt{x}}}{33}$$
簡単化せよ:
$$\int{e^{\sqrt{33} \sqrt{x}} d x} = \frac{2 \left(\sqrt{33} \sqrt{x} - 1\right) e^{\sqrt{33} \sqrt{x}}}{33}$$
積分定数を加える:
$$\int{e^{\sqrt{33} \sqrt{x}} d x} = \frac{2 \left(\sqrt{33} \sqrt{x} - 1\right) e^{\sqrt{33} \sqrt{x}}}{33}+C$$
解答
$$$\int e^{\sqrt{33} \sqrt{x}}\, dx = \frac{2 \left(\sqrt{33} \sqrt{x} - 1\right) e^{\sqrt{33} \sqrt{x}}}{33} + C$$$A