$$$\frac{1}{\sqrt[3]{x - 2}}$$$の積分

この計算機は、手順を示しながら$$$\frac{1}{\sqrt[3]{x - 2}}$$$の不定積分(原始関数)を求めます。

関連する計算機: 定積分・広義積分計算機

$$$dx$$$$$$dy$$$ などの微分記号を使わずに書いてください。
自動検出のため、空欄のままにしてください。

計算機が計算を実行できなかった場合、エラーを見つけた場合、またはご提案・フィードバックがある場合は、お問い合わせください

入力内容

$$$\int \frac{1}{\sqrt[3]{x - 2}}\, dx$$$ を求めよ。

解答

$$$u=x - 2$$$ とする。

すると $$$du=\left(x - 2\right)^{\prime }dx = 1 dx$$$(手順は»で確認できます)、$$$dx = du$$$ となります。

積分は次のようになります

$${\color{red}{\int{\frac{1}{\sqrt[3]{x - 2}} d x}}} = {\color{red}{\int{\frac{1}{\sqrt[3]{u}} d u}}}$$

$$$n=- \frac{1}{3}$$$ を用いて、べき乗の法則 $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ を適用します:

$${\color{red}{\int{\frac{1}{\sqrt[3]{u}} d u}}}={\color{red}{\int{u^{- \frac{1}{3}} d u}}}={\color{red}{\frac{u^{- \frac{1}{3} + 1}}{- \frac{1}{3} + 1}}}={\color{red}{\left(\frac{3 u^{\frac{2}{3}}}{2}\right)}}$$

次のことを思い出してください $$$u=x - 2$$$:

$$\frac{3 {\color{red}{u}}^{\frac{2}{3}}}{2} = \frac{3 {\color{red}{\left(x - 2\right)}}^{\frac{2}{3}}}{2}$$

したがって、

$$\int{\frac{1}{\sqrt[3]{x - 2}} d x} = \frac{3 \left(x - 2\right)^{\frac{2}{3}}}{2}$$

積分定数を加える:

$$\int{\frac{1}{\sqrt[3]{x - 2}} d x} = \frac{3 \left(x - 2\right)^{\frac{2}{3}}}{2}+C$$

解答

$$$\int \frac{1}{\sqrt[3]{x - 2}}\, dx = \frac{3 \left(x - 2\right)^{\frac{2}{3}}}{2} + C$$$A


Please try a new game Rotatly