$$$\frac{1}{\sec{\left(v \right)}}$$$の積分
入力内容
$$$\int \frac{1}{\sec{\left(v \right)}}\, dv$$$ を求めよ。
解答
被積分関数を余弦で表せ:
$${\color{red}{\int{\frac{1}{\sec{\left(v \right)}} d v}}} = {\color{red}{\int{\cos{\left(v \right)} d v}}}$$
余弦の積分は$$$\int{\cos{\left(v \right)} d v} = \sin{\left(v \right)}$$$:
$${\color{red}{\int{\cos{\left(v \right)} d v}}} = {\color{red}{\sin{\left(v \right)}}}$$
したがって、
$$\int{\frac{1}{\sec{\left(v \right)}} d v} = \sin{\left(v \right)}$$
積分定数を加える:
$$\int{\frac{1}{\sec{\left(v \right)}} d v} = \sin{\left(v \right)}+C$$
解答
$$$\int \frac{1}{\sec{\left(v \right)}}\, dv = \sin{\left(v \right)} + C$$$A
Please try a new game Rotatly