$$$1 - e^{x}$$$ の $$$e$$$ に関する積分
入力内容
$$$\int \left(1 - e^{x}\right)\, de$$$ を求めよ。
解答
項別に積分せよ:
$${\color{red}{\int{\left(1 - e^{x}\right)d e}}} = {\color{red}{\left(\int{1 d e} - \int{e^{x} d e}\right)}}$$
$$$c=1$$$ に対して定数則 $$$\int c\, de = c e$$$ を適用する:
$$- \int{e^{x} d e} + {\color{red}{\int{1 d e}}} = - \int{e^{x} d e} + {\color{red}{e}}$$
$$$n=x$$$ を用いて、べき乗の法則 $$$\int e^{n}\, de = \frac{e^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ を適用します:
$$e - {\color{red}{\int{e^{x} d e}}}=e - {\color{red}{\frac{e^{x + 1}}{x + 1}}}=e - {\color{red}{\frac{e^{x + 1}}{x + 1}}}$$
したがって、
$$\int{\left(1 - e^{x}\right)d e} = e - \frac{e^{x + 1}}{x + 1}$$
簡単化せよ:
$$\int{\left(1 - e^{x}\right)d e} = \frac{e \left(x + 1\right) - e^{x + 1}}{x + 1}$$
積分定数を加える:
$$\int{\left(1 - e^{x}\right)d e} = \frac{e \left(x + 1\right) - e^{x + 1}}{x + 1}+C$$
解答
$$$\int \left(1 - e^{x}\right)\, de = \frac{e \left(x + 1\right) - e^{x + 1}}{x + 1} + C$$$A