$$$\cot^{4}{\left(2 x \right)}$$$の積分
入力内容
$$$\int \cot^{4}{\left(2 x \right)}\, dx$$$ を求めよ。
解答
$$$u=2 x$$$ とする。
すると $$$du=\left(2 x\right)^{\prime }dx = 2 dx$$$(手順は»で確認できます)、$$$dx = \frac{du}{2}$$$ となります。
積分は次のようになります
$${\color{red}{\int{\cot^{4}{\left(2 x \right)} d x}}} = {\color{red}{\int{\frac{\cot^{4}{\left(u \right)}}{2} d u}}}$$
定数倍の法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ を、$$$c=\frac{1}{2}$$$ と $$$f{\left(u \right)} = \cot^{4}{\left(u \right)}$$$ に対して適用する:
$${\color{red}{\int{\frac{\cot^{4}{\left(u \right)}}{2} d u}}} = {\color{red}{\left(\frac{\int{\cot^{4}{\left(u \right)} d u}}{2}\right)}}$$
$$$v=\cot{\left(u \right)}$$$ とする。
すると $$$dv=\left(\cot{\left(u \right)}\right)^{\prime }du = - \csc^{2}{\left(u \right)} du$$$(手順は»で確認できます)、$$$\csc^{2}{\left(u \right)} du = - dv$$$ となります。
したがって、
$$\frac{{\color{red}{\int{\cot^{4}{\left(u \right)} d u}}}}{2} = \frac{{\color{red}{\int{\left(- \frac{v^{4}}{v^{2} + 1}\right)d v}}}}{2}$$
定数倍の法則 $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$ を、$$$c=-1$$$ と $$$f{\left(v \right)} = \frac{v^{4}}{v^{2} + 1}$$$ に対して適用する:
$$\frac{{\color{red}{\int{\left(- \frac{v^{4}}{v^{2} + 1}\right)d v}}}}{2} = \frac{{\color{red}{\left(- \int{\frac{v^{4}}{v^{2} + 1} d v}\right)}}}{2}$$
分子の次数が分母の次数以上であるため、多項式の長除法を行います(手順は»で確認できます):
$$- \frac{{\color{red}{\int{\frac{v^{4}}{v^{2} + 1} d v}}}}{2} = - \frac{{\color{red}{\int{\left(v^{2} - 1 + \frac{1}{v^{2} + 1}\right)d v}}}}{2}$$
項別に積分せよ:
$$- \frac{{\color{red}{\int{\left(v^{2} - 1 + \frac{1}{v^{2} + 1}\right)d v}}}}{2} = - \frac{{\color{red}{\left(- \int{1 d v} + \int{v^{2} d v} + \int{\frac{1}{v^{2} + 1} d v}\right)}}}{2}$$
$$$c=1$$$ に対して定数則 $$$\int c\, dv = c v$$$ を適用する:
$$- \frac{\int{v^{2} d v}}{2} - \frac{\int{\frac{1}{v^{2} + 1} d v}}{2} + \frac{{\color{red}{\int{1 d v}}}}{2} = - \frac{\int{v^{2} d v}}{2} - \frac{\int{\frac{1}{v^{2} + 1} d v}}{2} + \frac{{\color{red}{v}}}{2}$$
$$$n=2$$$ を用いて、べき乗の法則 $$$\int v^{n}\, dv = \frac{v^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ を適用します:
$$\frac{v}{2} - \frac{\int{\frac{1}{v^{2} + 1} d v}}{2} - \frac{{\color{red}{\int{v^{2} d v}}}}{2}=\frac{v}{2} - \frac{\int{\frac{1}{v^{2} + 1} d v}}{2} - \frac{{\color{red}{\frac{v^{1 + 2}}{1 + 2}}}}{2}=\frac{v}{2} - \frac{\int{\frac{1}{v^{2} + 1} d v}}{2} - \frac{{\color{red}{\left(\frac{v^{3}}{3}\right)}}}{2}$$
$$$\frac{1}{v^{2} + 1}$$$ の不定積分は $$$\int{\frac{1}{v^{2} + 1} d v} = \operatorname{atan}{\left(v \right)}$$$ です:
$$- \frac{v^{3}}{6} + \frac{v}{2} - \frac{{\color{red}{\int{\frac{1}{v^{2} + 1} d v}}}}{2} = - \frac{v^{3}}{6} + \frac{v}{2} - \frac{{\color{red}{\operatorname{atan}{\left(v \right)}}}}{2}$$
次のことを思い出してください $$$v=\cot{\left(u \right)}$$$:
$$- \frac{\operatorname{atan}{\left({\color{red}{v}} \right)}}{2} + \frac{{\color{red}{v}}}{2} - \frac{{\color{red}{v}}^{3}}{6} = - \frac{\operatorname{atan}{\left({\color{red}{\cot{\left(u \right)}}} \right)}}{2} + \frac{{\color{red}{\cot{\left(u \right)}}}}{2} - \frac{{\color{red}{\cot{\left(u \right)}}}^{3}}{6}$$
次のことを思い出してください $$$u=2 x$$$:
$$\frac{\cot{\left({\color{red}{u}} \right)}}{2} - \frac{\cot^{3}{\left({\color{red}{u}} \right)}}{6} - \frac{\operatorname{atan}{\left(\cot{\left({\color{red}{u}} \right)} \right)}}{2} = \frac{\cot{\left({\color{red}{\left(2 x\right)}} \right)}}{2} - \frac{\cot^{3}{\left({\color{red}{\left(2 x\right)}} \right)}}{6} - \frac{\operatorname{atan}{\left(\cot{\left({\color{red}{\left(2 x\right)}} \right)} \right)}}{2}$$
したがって、
$$\int{\cot^{4}{\left(2 x \right)} d x} = - \frac{\cot^{3}{\left(2 x \right)}}{6} + \frac{\cot{\left(2 x \right)}}{2} - \frac{\operatorname{atan}{\left(\cot{\left(2 x \right)} \right)}}{2}$$
積分定数を加える:
$$\int{\cot^{4}{\left(2 x \right)} d x} = - \frac{\cot^{3}{\left(2 x \right)}}{6} + \frac{\cot{\left(2 x \right)}}{2} - \frac{\operatorname{atan}{\left(\cot{\left(2 x \right)} \right)}}{2}+C$$
解答
$$$\int \cot^{4}{\left(2 x \right)}\, dx = \left(- \frac{\cot^{3}{\left(2 x \right)}}{6} + \frac{\cot{\left(2 x \right)}}{2} - \frac{\operatorname{atan}{\left(\cot{\left(2 x \right)} \right)}}{2}\right) + C$$$A