$$$\cos{\left(5 t \right)} \cos{\left(10 t \right)}$$$の積分

この計算機は、手順を示しながら$$$\cos{\left(5 t \right)} \cos{\left(10 t \right)}$$$の不定積分(原始関数)を求めます。

関連する計算機: 定積分・広義積分計算機

$$$dx$$$$$$dy$$$ などの微分記号を使わずに書いてください。
自動検出のため、空欄のままにしてください。

計算機が計算を実行できなかった場合、エラーを見つけた場合、またはご提案・フィードバックがある場合は、お問い合わせください

入力内容

$$$\int \cos{\left(5 t \right)} \cos{\left(10 t \right)}\, dt$$$ を求めよ。

解答

公式 $$$\cos\left(\alpha \right)\cos\left(\beta \right)=\frac{1}{2} \cos\left(\alpha-\beta \right)+\frac{1}{2} \cos\left(\alpha+\beta \right)$$$ を用い、$$$\alpha=5 t$$$$$$\beta=10 t$$$ を使って被積分関数を書き換えなさい。:

$${\color{red}{\int{\cos{\left(5 t \right)} \cos{\left(10 t \right)} d t}}} = {\color{red}{\int{\left(\frac{\cos{\left(5 t \right)}}{2} + \frac{\cos{\left(15 t \right)}}{2}\right)d t}}}$$

定数倍の法則 $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ を、$$$c=\frac{1}{2}$$$$$$f{\left(t \right)} = \cos{\left(5 t \right)} + \cos{\left(15 t \right)}$$$ に対して適用する:

$${\color{red}{\int{\left(\frac{\cos{\left(5 t \right)}}{2} + \frac{\cos{\left(15 t \right)}}{2}\right)d t}}} = {\color{red}{\left(\frac{\int{\left(\cos{\left(5 t \right)} + \cos{\left(15 t \right)}\right)d t}}{2}\right)}}$$

項別に積分せよ:

$$\frac{{\color{red}{\int{\left(\cos{\left(5 t \right)} + \cos{\left(15 t \right)}\right)d t}}}}{2} = \frac{{\color{red}{\left(\int{\cos{\left(5 t \right)} d t} + \int{\cos{\left(15 t \right)} d t}\right)}}}{2}$$

$$$u=5 t$$$ とする。

すると $$$du=\left(5 t\right)^{\prime }dt = 5 dt$$$(手順は»で確認できます)、$$$dt = \frac{du}{5}$$$ となります。

したがって、

$$\frac{\int{\cos{\left(15 t \right)} d t}}{2} + \frac{{\color{red}{\int{\cos{\left(5 t \right)} d t}}}}{2} = \frac{\int{\cos{\left(15 t \right)} d t}}{2} + \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{5} d u}}}}{2}$$

定数倍の法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ を、$$$c=\frac{1}{5}$$$$$$f{\left(u \right)} = \cos{\left(u \right)}$$$ に対して適用する:

$$\frac{\int{\cos{\left(15 t \right)} d t}}{2} + \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{5} d u}}}}{2} = \frac{\int{\cos{\left(15 t \right)} d t}}{2} + \frac{{\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{5}\right)}}}{2}$$

余弦の積分は$$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:

$$\frac{\int{\cos{\left(15 t \right)} d t}}{2} + \frac{{\color{red}{\int{\cos{\left(u \right)} d u}}}}{10} = \frac{\int{\cos{\left(15 t \right)} d t}}{2} + \frac{{\color{red}{\sin{\left(u \right)}}}}{10}$$

次のことを思い出してください $$$u=5 t$$$:

$$\frac{\int{\cos{\left(15 t \right)} d t}}{2} + \frac{\sin{\left({\color{red}{u}} \right)}}{10} = \frac{\int{\cos{\left(15 t \right)} d t}}{2} + \frac{\sin{\left({\color{red}{\left(5 t\right)}} \right)}}{10}$$

$$$u=15 t$$$ とする。

すると $$$du=\left(15 t\right)^{\prime }dt = 15 dt$$$(手順は»で確認できます)、$$$dt = \frac{du}{15}$$$ となります。

この積分は次のように書き換えられる

$$\frac{\sin{\left(5 t \right)}}{10} + \frac{{\color{red}{\int{\cos{\left(15 t \right)} d t}}}}{2} = \frac{\sin{\left(5 t \right)}}{10} + \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{15} d u}}}}{2}$$

定数倍の法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ を、$$$c=\frac{1}{15}$$$$$$f{\left(u \right)} = \cos{\left(u \right)}$$$ に対して適用する:

$$\frac{\sin{\left(5 t \right)}}{10} + \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{15} d u}}}}{2} = \frac{\sin{\left(5 t \right)}}{10} + \frac{{\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{15}\right)}}}{2}$$

余弦の積分は$$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:

$$\frac{\sin{\left(5 t \right)}}{10} + \frac{{\color{red}{\int{\cos{\left(u \right)} d u}}}}{30} = \frac{\sin{\left(5 t \right)}}{10} + \frac{{\color{red}{\sin{\left(u \right)}}}}{30}$$

次のことを思い出してください $$$u=15 t$$$:

$$\frac{\sin{\left(5 t \right)}}{10} + \frac{\sin{\left({\color{red}{u}} \right)}}{30} = \frac{\sin{\left(5 t \right)}}{10} + \frac{\sin{\left({\color{red}{\left(15 t\right)}} \right)}}{30}$$

したがって、

$$\int{\cos{\left(5 t \right)} \cos{\left(10 t \right)} d t} = \frac{\sin{\left(5 t \right)}}{10} + \frac{\sin{\left(15 t \right)}}{30}$$

積分定数を加える:

$$\int{\cos{\left(5 t \right)} \cos{\left(10 t \right)} d t} = \frac{\sin{\left(5 t \right)}}{10} + \frac{\sin{\left(15 t \right)}}{30}+C$$

解答

$$$\int \cos{\left(5 t \right)} \cos{\left(10 t \right)}\, dt = \left(\frac{\sin{\left(5 t \right)}}{10} + \frac{\sin{\left(15 t \right)}}{30}\right) + C$$$A


Please try a new game Rotatly