$$$6 \cos^{2}{\left(x \right)}$$$の積分
入力内容
$$$\int 6 \cos^{2}{\left(x \right)}\, dx$$$ を求めよ。
解答
定数倍の法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ を、$$$c=6$$$ と $$$f{\left(x \right)} = \cos^{2}{\left(x \right)}$$$ に対して適用する:
$${\color{red}{\int{6 \cos^{2}{\left(x \right)} d x}}} = {\color{red}{\left(6 \int{\cos^{2}{\left(x \right)} d x}\right)}}$$
冪低減公式 $$$\cos^{2}{\left(\alpha \right)} = \frac{\cos{\left(2 \alpha \right)}}{2} + \frac{1}{2}$$$ を $$$\alpha=x$$$ に適用する:
$$6 {\color{red}{\int{\cos^{2}{\left(x \right)} d x}}} = 6 {\color{red}{\int{\left(\frac{\cos{\left(2 x \right)}}{2} + \frac{1}{2}\right)d x}}}$$
定数倍の法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ を、$$$c=\frac{1}{2}$$$ と $$$f{\left(x \right)} = \cos{\left(2 x \right)} + 1$$$ に対して適用する:
$$6 {\color{red}{\int{\left(\frac{\cos{\left(2 x \right)}}{2} + \frac{1}{2}\right)d x}}} = 6 {\color{red}{\left(\frac{\int{\left(\cos{\left(2 x \right)} + 1\right)d x}}{2}\right)}}$$
項別に積分せよ:
$$3 {\color{red}{\int{\left(\cos{\left(2 x \right)} + 1\right)d x}}} = 3 {\color{red}{\left(\int{1 d x} + \int{\cos{\left(2 x \right)} d x}\right)}}$$
$$$c=1$$$ に対して定数則 $$$\int c\, dx = c x$$$ を適用する:
$$3 \int{\cos{\left(2 x \right)} d x} + 3 {\color{red}{\int{1 d x}}} = 3 \int{\cos{\left(2 x \right)} d x} + 3 {\color{red}{x}}$$
$$$u=2 x$$$ とする。
すると $$$du=\left(2 x\right)^{\prime }dx = 2 dx$$$(手順は»で確認できます)、$$$dx = \frac{du}{2}$$$ となります。
この積分は次のように書き換えられる
$$3 x + 3 {\color{red}{\int{\cos{\left(2 x \right)} d x}}} = 3 x + 3 {\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}}$$
定数倍の法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ を、$$$c=\frac{1}{2}$$$ と $$$f{\left(u \right)} = \cos{\left(u \right)}$$$ に対して適用する:
$$3 x + 3 {\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}} = 3 x + 3 {\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{2}\right)}}$$
余弦の積分は$$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:
$$3 x + \frac{3 {\color{red}{\int{\cos{\left(u \right)} d u}}}}{2} = 3 x + \frac{3 {\color{red}{\sin{\left(u \right)}}}}{2}$$
次のことを思い出してください $$$u=2 x$$$:
$$3 x + \frac{3 \sin{\left({\color{red}{u}} \right)}}{2} = 3 x + \frac{3 \sin{\left({\color{red}{\left(2 x\right)}} \right)}}{2}$$
したがって、
$$\int{6 \cos^{2}{\left(x \right)} d x} = 3 x + \frac{3 \sin{\left(2 x \right)}}{2}$$
積分定数を加える:
$$\int{6 \cos^{2}{\left(x \right)} d x} = 3 x + \frac{3 \sin{\left(2 x \right)}}{2}+C$$
解答
$$$\int 6 \cos^{2}{\left(x \right)}\, dx = \left(3 x + \frac{3 \sin{\left(2 x \right)}}{2}\right) + C$$$A