$$$4 \cos^{4}{\left(\frac{\theta}{2} \right)}$$$の積分
関連する計算機: 定積分・広義積分計算機
入力内容
$$$\int 4 \cos^{4}{\left(\frac{\theta}{2} \right)}\, d\theta$$$ を求めよ。
解答
定数倍の法則 $$$\int c f{\left(\theta \right)}\, d\theta = c \int f{\left(\theta \right)}\, d\theta$$$ を、$$$c=4$$$ と $$$f{\left(\theta \right)} = \cos^{4}{\left(\frac{\theta}{2} \right)}$$$ に対して適用する:
$${\color{red}{\int{4 \cos^{4}{\left(\frac{\theta}{2} \right)} d \theta}}} = {\color{red}{\left(4 \int{\cos^{4}{\left(\frac{\theta}{2} \right)} d \theta}\right)}}$$
$$$u=\frac{\theta}{2}$$$ とする。
すると $$$du=\left(\frac{\theta}{2}\right)^{\prime }d\theta = \frac{d\theta}{2}$$$(手順は»で確認できます)、$$$d\theta = 2 du$$$ となります。
したがって、
$$4 {\color{red}{\int{\cos^{4}{\left(\frac{\theta}{2} \right)} d \theta}}} = 4 {\color{red}{\int{2 \cos^{4}{\left(u \right)} d u}}}$$
定数倍の法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ を、$$$c=2$$$ と $$$f{\left(u \right)} = \cos^{4}{\left(u \right)}$$$ に対して適用する:
$$4 {\color{red}{\int{2 \cos^{4}{\left(u \right)} d u}}} = 4 {\color{red}{\left(2 \int{\cos^{4}{\left(u \right)} d u}\right)}}$$
冪低減公式 $$$\cos^{4}{\left(\alpha \right)} = \frac{\cos{\left(2 \alpha \right)}}{2} + \frac{\cos{\left(4 \alpha \right)}}{8} + \frac{3}{8}$$$ を $$$\alpha= u $$$ に適用する:
$$8 {\color{red}{\int{\cos^{4}{\left(u \right)} d u}}} = 8 {\color{red}{\int{\left(\frac{\cos{\left(2 u \right)}}{2} + \frac{\cos{\left(4 u \right)}}{8} + \frac{3}{8}\right)d u}}}$$
定数倍の法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ を、$$$c=\frac{1}{8}$$$ と $$$f{\left(u \right)} = 4 \cos{\left(2 u \right)} + \cos{\left(4 u \right)} + 3$$$ に対して適用する:
$$8 {\color{red}{\int{\left(\frac{\cos{\left(2 u \right)}}{2} + \frac{\cos{\left(4 u \right)}}{8} + \frac{3}{8}\right)d u}}} = 8 {\color{red}{\left(\frac{\int{\left(4 \cos{\left(2 u \right)} + \cos{\left(4 u \right)} + 3\right)d u}}{8}\right)}}$$
項別に積分せよ:
$${\color{red}{\int{\left(4 \cos{\left(2 u \right)} + \cos{\left(4 u \right)} + 3\right)d u}}} = {\color{red}{\left(\int{3 d u} + \int{4 \cos{\left(2 u \right)} d u} + \int{\cos{\left(4 u \right)} d u}\right)}}$$
$$$c=3$$$ に対して定数則 $$$\int c\, du = c u$$$ を適用する:
$$\int{4 \cos{\left(2 u \right)} d u} + \int{\cos{\left(4 u \right)} d u} + {\color{red}{\int{3 d u}}} = \int{4 \cos{\left(2 u \right)} d u} + \int{\cos{\left(4 u \right)} d u} + {\color{red}{\left(3 u\right)}}$$
定数倍の法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ を、$$$c=4$$$ と $$$f{\left(u \right)} = \cos{\left(2 u \right)}$$$ に対して適用する:
$$3 u + \int{\cos{\left(4 u \right)} d u} + {\color{red}{\int{4 \cos{\left(2 u \right)} d u}}} = 3 u + \int{\cos{\left(4 u \right)} d u} + {\color{red}{\left(4 \int{\cos{\left(2 u \right)} d u}\right)}}$$
$$$v=2 u$$$ とする。
すると $$$dv=\left(2 u\right)^{\prime }du = 2 du$$$(手順は»で確認できます)、$$$du = \frac{dv}{2}$$$ となります。
したがって、
$$3 u + \int{\cos{\left(4 u \right)} d u} + 4 {\color{red}{\int{\cos{\left(2 u \right)} d u}}} = 3 u + \int{\cos{\left(4 u \right)} d u} + 4 {\color{red}{\int{\frac{\cos{\left(v \right)}}{2} d v}}}$$
定数倍の法則 $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$ を、$$$c=\frac{1}{2}$$$ と $$$f{\left(v \right)} = \cos{\left(v \right)}$$$ に対して適用する:
$$3 u + \int{\cos{\left(4 u \right)} d u} + 4 {\color{red}{\int{\frac{\cos{\left(v \right)}}{2} d v}}} = 3 u + \int{\cos{\left(4 u \right)} d u} + 4 {\color{red}{\left(\frac{\int{\cos{\left(v \right)} d v}}{2}\right)}}$$
余弦の積分は$$$\int{\cos{\left(v \right)} d v} = \sin{\left(v \right)}$$$:
$$3 u + \int{\cos{\left(4 u \right)} d u} + 2 {\color{red}{\int{\cos{\left(v \right)} d v}}} = 3 u + \int{\cos{\left(4 u \right)} d u} + 2 {\color{red}{\sin{\left(v \right)}}}$$
次のことを思い出してください $$$v=2 u$$$:
$$3 u + \int{\cos{\left(4 u \right)} d u} + 2 \sin{\left({\color{red}{v}} \right)} = 3 u + \int{\cos{\left(4 u \right)} d u} + 2 \sin{\left({\color{red}{\left(2 u\right)}} \right)}$$
$$$v=4 u$$$ とする。
すると $$$dv=\left(4 u\right)^{\prime }du = 4 du$$$(手順は»で確認できます)、$$$du = \frac{dv}{4}$$$ となります。
したがって、
$$3 u + 2 \sin{\left(2 u \right)} + {\color{red}{\int{\cos{\left(4 u \right)} d u}}} = 3 u + 2 \sin{\left(2 u \right)} + {\color{red}{\int{\frac{\cos{\left(v \right)}}{4} d v}}}$$
定数倍の法則 $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$ を、$$$c=\frac{1}{4}$$$ と $$$f{\left(v \right)} = \cos{\left(v \right)}$$$ に対して適用する:
$$3 u + 2 \sin{\left(2 u \right)} + {\color{red}{\int{\frac{\cos{\left(v \right)}}{4} d v}}} = 3 u + 2 \sin{\left(2 u \right)} + {\color{red}{\left(\frac{\int{\cos{\left(v \right)} d v}}{4}\right)}}$$
余弦の積分は$$$\int{\cos{\left(v \right)} d v} = \sin{\left(v \right)}$$$:
$$3 u + 2 \sin{\left(2 u \right)} + \frac{{\color{red}{\int{\cos{\left(v \right)} d v}}}}{4} = 3 u + 2 \sin{\left(2 u \right)} + \frac{{\color{red}{\sin{\left(v \right)}}}}{4}$$
次のことを思い出してください $$$v=4 u$$$:
$$3 u + 2 \sin{\left(2 u \right)} + \frac{\sin{\left({\color{red}{v}} \right)}}{4} = 3 u + 2 \sin{\left(2 u \right)} + \frac{\sin{\left({\color{red}{\left(4 u\right)}} \right)}}{4}$$
次のことを思い出してください $$$u=\frac{\theta}{2}$$$:
$$2 \sin{\left(2 {\color{red}{u}} \right)} + \frac{\sin{\left(4 {\color{red}{u}} \right)}}{4} + 3 {\color{red}{u}} = 2 \sin{\left(2 {\color{red}{\left(\frac{\theta}{2}\right)}} \right)} + \frac{\sin{\left(4 {\color{red}{\left(\frac{\theta}{2}\right)}} \right)}}{4} + 3 {\color{red}{\left(\frac{\theta}{2}\right)}}$$
したがって、
$$\int{4 \cos^{4}{\left(\frac{\theta}{2} \right)} d \theta} = \frac{3 \theta}{2} + 2 \sin{\left(\theta \right)} + \frac{\sin{\left(2 \theta \right)}}{4}$$
簡単化せよ:
$$\int{4 \cos^{4}{\left(\frac{\theta}{2} \right)} d \theta} = \frac{6 \theta + 8 \sin{\left(\theta \right)} + \sin{\left(2 \theta \right)}}{4}$$
積分定数を加える:
$$\int{4 \cos^{4}{\left(\frac{\theta}{2} \right)} d \theta} = \frac{6 \theta + 8 \sin{\left(\theta \right)} + \sin{\left(2 \theta \right)}}{4}+C$$
解答
$$$\int 4 \cos^{4}{\left(\frac{\theta}{2} \right)}\, d\theta = \frac{6 \theta + 8 \sin{\left(\theta \right)} + \sin{\left(2 \theta \right)}}{4} + C$$$A