$$$\frac{2 t}{\left(t - 3\right)^{2}}$$$の積分

この計算機は、手順を示しながら$$$\frac{2 t}{\left(t - 3\right)^{2}}$$$の不定積分(原始関数)を求めます。

関連する計算機: 定積分・広義積分計算機

$$$dx$$$$$$dy$$$ などの微分記号を使わずに書いてください。
自動検出のため、空欄のままにしてください。

計算機が計算を実行できなかった場合、エラーを見つけた場合、またはご提案・フィードバックがある場合は、お問い合わせください

入力内容

$$$\int \frac{2 t}{\left(t - 3\right)^{2}}\, dt$$$ を求めよ。

解答

定数倍の法則 $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ を、$$$c=2$$$$$$f{\left(t \right)} = \frac{t}{\left(t - 3\right)^{2}}$$$ に対して適用する:

$${\color{red}{\int{\frac{2 t}{\left(t - 3\right)^{2}} d t}}} = {\color{red}{\left(2 \int{\frac{t}{\left(t - 3\right)^{2}} d t}\right)}}$$

被積分関数の分子を$$$t=t - 3+3$$$として書き換え、分数を分解する:

$$2 {\color{red}{\int{\frac{t}{\left(t - 3\right)^{2}} d t}}} = 2 {\color{red}{\int{\left(\frac{1}{t - 3} + \frac{3}{\left(t - 3\right)^{2}}\right)d t}}}$$

項別に積分せよ:

$$2 {\color{red}{\int{\left(\frac{1}{t - 3} + \frac{3}{\left(t - 3\right)^{2}}\right)d t}}} = 2 {\color{red}{\left(\int{\frac{3}{\left(t - 3\right)^{2}} d t} + \int{\frac{1}{t - 3} d t}\right)}}$$

$$$u=t - 3$$$ とする。

すると $$$du=\left(t - 3\right)^{\prime }dt = 1 dt$$$(手順は»で確認できます)、$$$dt = du$$$ となります。

したがって、

$$2 \int{\frac{3}{\left(t - 3\right)^{2}} d t} + 2 {\color{red}{\int{\frac{1}{t - 3} d t}}} = 2 \int{\frac{3}{\left(t - 3\right)^{2}} d t} + 2 {\color{red}{\int{\frac{1}{u} d u}}}$$

$$$\frac{1}{u}$$$ の不定積分は $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$ です:

$$2 \int{\frac{3}{\left(t - 3\right)^{2}} d t} + 2 {\color{red}{\int{\frac{1}{u} d u}}} = 2 \int{\frac{3}{\left(t - 3\right)^{2}} d t} + 2 {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$

次のことを思い出してください $$$u=t - 3$$$:

$$2 \ln{\left(\left|{{\color{red}{u}}}\right| \right)} + 2 \int{\frac{3}{\left(t - 3\right)^{2}} d t} = 2 \ln{\left(\left|{{\color{red}{\left(t - 3\right)}}}\right| \right)} + 2 \int{\frac{3}{\left(t - 3\right)^{2}} d t}$$

定数倍の法則 $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ を、$$$c=3$$$$$$f{\left(t \right)} = \frac{1}{\left(t - 3\right)^{2}}$$$ に対して適用する:

$$2 \ln{\left(\left|{t - 3}\right| \right)} + 2 {\color{red}{\int{\frac{3}{\left(t - 3\right)^{2}} d t}}} = 2 \ln{\left(\left|{t - 3}\right| \right)} + 2 {\color{red}{\left(3 \int{\frac{1}{\left(t - 3\right)^{2}} d t}\right)}}$$

$$$u=t - 3$$$ とする。

すると $$$du=\left(t - 3\right)^{\prime }dt = 1 dt$$$(手順は»で確認できます)、$$$dt = du$$$ となります。

したがって、

$$2 \ln{\left(\left|{t - 3}\right| \right)} + 6 {\color{red}{\int{\frac{1}{\left(t - 3\right)^{2}} d t}}} = 2 \ln{\left(\left|{t - 3}\right| \right)} + 6 {\color{red}{\int{\frac{1}{u^{2}} d u}}}$$

$$$n=-2$$$ を用いて、べき乗の法則 $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ を適用します:

$$2 \ln{\left(\left|{t - 3}\right| \right)} + 6 {\color{red}{\int{\frac{1}{u^{2}} d u}}}=2 \ln{\left(\left|{t - 3}\right| \right)} + 6 {\color{red}{\int{u^{-2} d u}}}=2 \ln{\left(\left|{t - 3}\right| \right)} + 6 {\color{red}{\frac{u^{-2 + 1}}{-2 + 1}}}=2 \ln{\left(\left|{t - 3}\right| \right)} + 6 {\color{red}{\left(- u^{-1}\right)}}=2 \ln{\left(\left|{t - 3}\right| \right)} + 6 {\color{red}{\left(- \frac{1}{u}\right)}}$$

次のことを思い出してください $$$u=t - 3$$$:

$$2 \ln{\left(\left|{t - 3}\right| \right)} - 6 {\color{red}{u}}^{-1} = 2 \ln{\left(\left|{t - 3}\right| \right)} - 6 {\color{red}{\left(t - 3\right)}}^{-1}$$

したがって、

$$\int{\frac{2 t}{\left(t - 3\right)^{2}} d t} = 2 \ln{\left(\left|{t - 3}\right| \right)} - \frac{6}{t - 3}$$

簡単化せよ:

$$\int{\frac{2 t}{\left(t - 3\right)^{2}} d t} = \frac{2 \left(\left(t - 3\right) \ln{\left(\left|{t - 3}\right| \right)} - 3\right)}{t - 3}$$

積分定数を加える:

$$\int{\frac{2 t}{\left(t - 3\right)^{2}} d t} = \frac{2 \left(\left(t - 3\right) \ln{\left(\left|{t - 3}\right| \right)} - 3\right)}{t - 3}+C$$

解答

$$$\int \frac{2 t}{\left(t - 3\right)^{2}}\, dt = \frac{2 \left(\left(t - 3\right) \ln\left(\left|{t - 3}\right|\right) - 3\right)}{t - 3} + C$$$A


Please try a new game Rotatly